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Introduction

This manual describes C-Linda and Fortran Linda, parallel programming
languages based on C and Fortran (respectively) that enable users to create
parallel programs that perform well in a wide range of computing environments.
C-Linda and Fortran Linda may be used both to parallelize existing sequential
applications and to develop new parallel applications. C-Linda combines the
coordination language Linda with the programming language C; similarly,
Fortran Linda combines the coordination language Linda with the Fortran
programming language. Parallel programs are created with C-Linda and Fortran
Linda by combining a number of independent computations (processes) into a
single parallel program. The separate computations are written in C or Fortran,
and Linda provides the glue that binds them together.

Linda has several characteristics which set it apart from other parallel
programming environments:

➠ Linda augments the serial programming language (C or Fortran). It does 
not replace it, nor make it obsolete. In this way, C-Linda and Fortran 
Linda build on investments in existing programs.

➠ Linda parallel programs are portable. C-Linda and Fortran Linda are 
available on a large number of parallel computer systems, including 
shared-memory computers, distributed memory computers, and 
networks, and with few exceptions, Linda programs written for one 
machine run without change on another. 

➠ Linda is easy to use. Conceptually, Linda implements parallelism via a 
logically global memory (virtual shared memory), called tuple space, and 
a small number of simple but powerful operations on it. Tuple space and 
the operations that act on it are easy to understand and quickly mastered. 
In addition, the C-Linda and Fortran Linda compilers support all of the 
usual program development features, including compile-time error 
checking and runtime debugging and visualization.

This manual discusses the features of C-Linda and Fortran Linda and includes
detailed examples illustrating their use. It also covers the variant form known as
Piranha, which provides an alternate network-based parallel programming
environment.

This manual will be useful to anyone wishing to use C-Linda and/or Fortran
Linda to develop parallel programs. It assumes a knowledge of C or Fortran
(consult the Bibliography for books discussing the C programming language), but
no specific knowledge of or experience with parallel programming.
Linda User’s Guide & Reference Manual ix
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Manual Overview
This manual provides an overview of creating parallel programs with Linda. It
includes discussions of both the nuts and bolts of doing so, and several extended
examples of transforming serial programs into parallelized ones. However, due to
space limitations, it is not possible to give more than an introductory overview of
this vast topic. SCIENTIFIC recommends the book How to Write Parallel
Programs: A First Course by Nicholas Carriero and David Gelernter for a
detailed treatment of parallel program and algorithm development (see the
Bibliography for the complete citation for this book and related works). 

The manual is divided into two main parts. The first five chapters comprise the
Linda User’s Guide, which discusses Linda in a task-oriented manner; the
second part, the Linda Reference Manual, documents the features of the Linda
parallel programming environment. The contents of the individual chapters are
described briefly below:

Chapter 1, A Brief Overview of Parallel Programming, discusses various
general approaches to parallel programming, and locates Linda within that
context. It also introduces tuple space, the Linda operations, and other essential
concepts.

Chapter 2, Using the Linda Operations, describes the Linda operations in
detail. It also explains the program compilation and execution process, and
includes a couple of simple example programs. It also includes an extended
discussion of tuple-matching rules and restrictions.

Chapter 3, Case Studies, presents several extended program examples
illustrating the process of transforming a sequential program into a parallel
program with C-Linda and Fortran-Linda.

Chapter 4, Using Linda on a Network, describes the special features and
considerations of the Linda implementation for networks of UNIX workstations.
The first section provides an introduction and “quick start” for new users of
Network Linda. The remainder of the chapter describes both the general features
of Network Linda and those specific to the Piranha environment.

Chapter 5, Debugging Linda Programs, describes the Tuplescope visualization
and debugging tool and how to use it to debug Linda programs. It also describes
how to debug Linda programs on a network.

Chapter 6, Creating Piranha Programs, describes the specific features and
requirements of Piranha programs.

Chapter 7, Linda Usage and Syntax Summary, discusses the features of the
Linda programming environment, including both C-Linda and Fortran Linda
language constructs and the elements of the Linda Toolkit.
x Linda User’s Guide & Reference Manual
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The Appendix, How and Where to Parallelize, describes how to find the
computationally-intensive portions of a program using standard UNIX profiling
utilities.

The Bibliography lists books and articles that may be of interest to Linda users.
Some items provide more advanced treatment of parallel programming
techniques, while others discuss the example programs in greater detail and/or
from a different perspective.

About the 
Example 
Programs

This manual includes lots of code and code fragments as examples. All such code
is derived from real programs, but in most cases it has been shortened and
simplified, usually to make it fit into the allowed space. Typically, declarations
and preprocessor directives are omitted except when they are vital to
understanding the program. Also, sections of code which are not relevant to the
point being made are often replaced by a one-line summary of their function (set
in italics). Blank lines (without initial comment indicator) have been inserted
into Fortran programs for readability. Thus, although the examples are derived
from real programs, they do not in general constitute “working” code.

Many examples are provided in both C and Fortran versions. We’ve also
highlighted the differences between the two languages in the text when
appropriate.

Typographic 
Conventions

Fixed-width type is used for all code examples, whether set off in their own
paragraphs or included within the main text. For example, variable names and
filenames referred to within the text are set in fixed-width type. 

Boldface fixed-width type is used in examples to indicate text—usually
commands to the operating system—typed by the user.

Italic type is used for replaceable arguments in operation and command
definitions, for summary lines and other description within example code, and
occasionally for emphasis.

Boldface sans-serif type is used for Linda operation names used in a generic
way within normal text and for non-varying text within syntax definitions.

Italic sans-serif type is used for replaceable arguments within formal syntax
definitions and when they are referred to within the text.
Linda User’s Guide & Reference Manual xi





           
1
A Brief Overview of Parallel 

Programming

People are always trying to make programs run faster. One way to do so is to divide
the work the program must do into pieces that can be worked on at the same time
(on different processors). More formally, creating a parallel program depends on
finding independent computations that can be executed simultaneously. 

Producing a parallel program generally involves three steps:

➠ Developing and debugging a sequential program. For existing programs, 
this step is already done.

➠ Transforming the sequential program into a parallel program.
➠ Optimizing the parallel program.

Of course, if the second step is done perfectly then the third one will be
unnecessary, but in practice that rarely happens. It’s usually much easier—and
quicker in the long run—to transform the serial program into a parallel program
in the most straightforward way possible, measure its performance, and then
search for ways to improve it. 

If we focus on step 2, a natural question arises: where does the parallelism come
from? The language of parallel programming can be quite ambiguous. On the one
hand, there is talk of “parallelizing programs,” a phrase which focuses on the
programmers who convert sequential programs into parallel ones. On the other
hand, much is also said about “exploiting parallelism,” implying that parallelism
is already inherent in the program itself. Which is correct? Is it something you
find or something you create?

The answer is, of course, it depends. Sometimes a program can be trivially
adapted to run in parallel because the work it does naturally divides into discrete
chunks. Sometimes a serial program must be restructured significantly in order
to transform it into a parallel program, reorganizing the computations the
program does into units which can be run in parallel. And sometimes an existing
program will yield little in the way of independent computations. In this case, it
is necessary to rethink the approach to the problem that the program
Linda User’s Guide & Reference Manual 1–1
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addresses—create new algorithms—in order to formulate a solution which can
be implemented as a parallel program.†

To put it another way, a computer program doesn’t merely solve a particular
problem, but rather embodies a particular approach to solving its specific
problem. Making a parallel version can potentially involve changes to the
program structure, or the algorithms it implements, or both. The examples in
this manual include instances of all three possibilities.

Once the work has been divided into pieces, yielding a parallel program, another
factor comes into play: the inherent cost associated with parallelism, specifically
the additional effort of constructing and coordinating the separate program parts.
This overhead is often dominated by the communication between discrete
program processes, and it naturally increases with the number of chunks the
program is divided into, eventually reaching a point of diminishing returns where
the cost of creating and maintaining the separate execution threads overshadows
the performance gains realized from their parallel execution. An efficient parallel
program will maximize the ratio of work proceeding in parallel to the overhead
associated with its parallel execution. 

This ratio of computation to communication is referred to as granularity. Think
of dividing a rock into roughly equal-sized parts. There are lots of ways to do it;
in fact, there is a continuum of possibilities ranging from fine grains of sand at
one end to two rocks half the size of the original at the other. A parallel program
that divides the work into many tiny tasks is said to be fine-grained, while one
that divides it into a small number of relatively large ones can be called
coarse-grained.

There is no absolute correct level of granularity. Neither coarse nor fine-grained
parallelism is inherently better or worse than the other. However, when
overhead overwhelms computation, a program is too fine grained for its
environment, whatever its absolute granularity level may be. The optimum level
depends on both the algorithms a program implements and the hardware
environment it runs in; a level of granularity that runs efficiently in one
environment (for example, a parallel computer with very fast interprocessor
communication channels) may not perform as well in another (such as a network
of workstations with much slower communication between processors). 

There are two ways to address this issue (and we’ll look at examples of both of
them in the course of this manual). First, many problems offer a choice of
granularity level. For example, if a program must execute eight independent
matrix multiply operations, a parallel program could perform all eight of them at
the same time or execute eight parallel matrix multiplication operations one
after another. Which approach is correct depends on the structure of the overall
problem, and each is better than the other in some circumstances. 

† Of course, even in these cases, it may still be possible to take advantage of a parallel 
computer by running multiple concurrent sequential jobs.
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The other solution is to build adjustable granularity into programs so that they
can be easily modified for different environments. Changing the granularity level
then becomes as simple as changing a few parameter definitions. This technique
complements the preceding one, and both can be used in the same program.

These are the major issues facing any parallel programmer. In the next section
we’ll look at three different approaches to creating parallel programs and indicate
how Linda is situated with respect to them.

Approaches to Parallel Programming
There are two main challenges facing any parallel programmer:

➠ How to divide the work among the available processors.‡

➠ Where to store the data and how to get it to processors that need it.

Two radically different approaches to these problems have emerged as the
dominant parallel processing paradigms: message passing and distributed data
structures.

‡ The term processor is used in a generic sense here to designate a distinct computational 
resource whether it is one CPU in a multiprocessor computer or a separate computer on 
a network.

Message Passing Message passing focuses on the separate processes used to complete the overall
computation. In this scheme, many concurrent processes are created, and all of
the data involved in the calculation is distributed among them in some way.
There is no shared data. When a process needs data held by another one, the
second process must send it to the first one.

For example, let’s again consider a matrix multiplication calculation: 

A * B = C

A message passing version might create many processes, each responsible for
computing one row of the output matrix C. If the matrices are large enough, it
might not be possible for each process to hold all of B at once. In this case, each
process might then hold the row of A corresponding to its output row, and, at any
given time, one column of B. The process computes the dot product of its row
and the column it currently holds, producing one element of its output row.
When it finishes with one column, it sends it on to another process, and receives
a new column from some process. Once all processes have received all the
columns of B and have finished their final dot product, the matrix multiplication
is complete (although the completed rows would still need to be explicitly moved
from the component processors to the desired output location).

The message passing approach to the problem is illustrated in the diagram in
Figure 1. It has a number of implications for the programmer. First, the program
needs to keep track of which process has what data at all times. Second, explicit
Linda User’s Guide & Reference Manual 1–3
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send data and receive data operations must be executed whenever data needs to
move from one process to another. Unless they are coded extremely carefully,
such bookkeeping and communication activities can cause bottlenecks in
program execution.

Distributed Data 
Structures

Distributed data structure programs are a second approach to parallel
programming. This method decouples the data required for the calculation and
the distinct simultaneously-executing processes which each perform a part of it,
making them autonomous. Distributed data structure programs use a shared data
space, with the individual processes reading data from it and placing results into
it. The data structure is distributed in the sense that different parts of it can
reside in different processors, but it looks like one single global memory space to
the component processes. In this sense, a distributed data structure might be
termed virtual shared memory. Although Linda can be used to implement both
types of parallel programs, the distributed data structures approach is the most
natural one for use with Linda.

All interprocess communication is accomplished via this global data space.
Processes never explicitly send messages to one another, but rather place data
into the shared data space. When another process needs that data, it obtains it
from the shared data space. Linda handles all data transfer operations, so the
program need not worry about the exact mechanism by which it occurs. Linda
operations require no additional overhead over any message passing scheme, and
indeed sometimes are more efficient.

Programs using the distributed data structure method often use a master/worker
computation strategy. Under this approach, the total work to be done by the
program is broken into a number of discrete tasks which are stored in the global
data space. One process, known as the master, is responsible for generating the
tasks and gathering and processing the results. Actual program execution
involves a number of component processes known as workers. Each worker
removes a task, completes it, and then grabs another, continuing until some
condition is met, it encounters a special type of task—known as a poison pill—

Figure 1. Message 
Passing Matrix 
Multiplication
In message passing 
parallel programs, there 
is no global data. All 
data is always held by 
some process and must 
be explicitly sent to 
other processes that 
need it. Here each 
process holds one row 
of A and computes one 
element of C while it has 
the corresponding 
column of B. The 
columns of B are 
passed from process to 
process to complete the 
computation.
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telling it to die, or it is terminated by some other mechanism. Depending on the
situation, the master process may also perform task computations in addition to
its other duties.

Note that the tasks and workers are also independent of one another. The total
work is not split among the workers; rather, the total work is split into a number
of chunks, and each worker performs task after task until the entire job is done.
In this case, it is the task size, and not merely the number of workers, that
primarily determines the granularity of the program, and this granularity can be
adjusted by varying the task size.

If we look again at our matrix multiplication example, each task might consist of
computing some part of the output matrix C. At the beginning of the program,
the master process creates tasks for each chunk of C that is to be computed
separately. Each worker removes a task from the shared data space. It then reads
the required rows of A and columns of B (if necessary), and forms the dot
products. When it is finished, it places the resulting chunk of C into the shared
data space, and at the conclusion of the program, the master gathers up all the
chunks of C. The granularity of the calculation can be adjusted by varying the
amount of C that each task computes. This approach to the problem is illustrated
in the diagram in Figure 2.

Notice once more the distinction between tasks and workers. In this example,
the elements of C to be computed are divided into groups, and each task consists
of computing one of the groups. The elements of C are not divided among the
worker processes in any explicit way. Worker processes do not know what tasks
they will perform when they are created. Workers acquire tasks as they are
ready, and perform whatever task they get. 

Shared Data Space

Worker Processes

A

B

C

Worker reads
required data

Worker sends results

Tasks

Figure 2. Distributed 
Data Structures Matrix 
Multiplication
In a distributed data 
structures parallel 
program, workers retrieve 
tasks from the shared 
data space, complete 
them, and then repeat the 
process until all tasks 
are done. Here each task 
is to compute a portion of 
the result matrix C. Each 
worker reads the data it 
needs for its current 
task—here the relevant 
portions of A and B—
from the global data 
space, and places its 
results there when 
finished as well. The 
master process, which 
generated the tasks and 
placed them into the 
shared data space, also 
eventually gathers the 
results placed there by 
the worker processes.
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This approach has many benefits. For one thing, it is generally easy to code,
since the worker processes don’t need to worry about explicit interprocess
communication; that is taken care of by the parallel programming environment,
which manages the shared data space. Processes read and write data via Linda’s
operations. In addition, this method also tends to be naturally load balancing.
Workers continually execute tasks as long as any of them remain. If one worker
runs on a faster processor than some others, it will finish each task more quickly
and do proportionately more of them. (Of course, there are times when reality
isn’t quite this simple, so we’ll look at some techniques to ensure good load
balancing in Chapter 3.)

The Linda Model Linda—or more precisely, the Linda model—is a general model of parallel
computing based on distributed data structures (although as we’ve noted before,
it may be used to implement message passing as well). Linda calls the shared
data space tuple space. C-Linda is an implementation of the Linda model using
the C programming language, and Fortran-Linda is an implementation of the
Linda model using the Fortran programming language. Processes access tuple
space via a small number of operations that C-Linda and Fortran-Linda provide.
For example, parallel programs using C-Linda are written in C and incorporate
these operations as necessary to access tuple space. In this way, C-Linda
functions as a coordination language, providing the tools and environment
necessary to combine distinct processes into a complete parallel program. The
parallel operations in C-Linda are orthogonal to C, providing complementary
capabilities necessary to parallel programs. C-Linda programs make full use of
standard C for computation and other non-parallel tasks; C-Linda enables these
sequential operations to be divided among the available processors. Since
C-Linda is implemented as a precompiler, C-Linda programs are essentially
independent of the particular (native) C compiler used for final compilation and
linking. Fortran Linda operates in an analogous manner.

Linda programmers don’t need to worry about how tuple space is set up, where it
is physically located, or how data moves between it and running processes; all of
this is managed by the Linda software system. Because of this, Linda is logically
independent of system architecture, and Linda programs are portable across
different architectures, be they shared memory computers, distributed memory
computers, or networks of workstations. 

Data moves to and from tuple space as tuples.† Tuples are the data structures of
tuple space. A tuple is a sequence of up to 16 typed fields; it is represented by a
comma-separated list of items enclosed in parentheses. Here is a simple example:

C Form Fortran Form
("simple", 1) ('simple', 1)

† Pronounced “two-pull” with the emphasis on the first syllable.
1–6 Linda User’s Guide & Reference Manual
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This tuple has two fields; the first is a character string, and the second is an
integer, and in this case, both of them contain literal values. Variables may also
be used in tuples:

C Form Fortran Form
("easy", i) ('easy', i)

This tuple also has a string as its first field, and a second field of whatever type
the variable i is. The value in the second field is i’s current value. 

Linda provides four operations‡ for accessing tuple space:

Operation Action
out Places a data tuple in tuple space.
eval Creates a live tuple (usually starting new process(es)).
in Removes a tuple from tuple space.
rd Reads the values in a tuple in tuple space, leaving the tuple there.

For example, this out operation places a data tuple with one string and two integer
fields into tuple space:

C Form Fortran Form
out("cube", 4, 64); out('cube', 4, 64)

There are two kinds of tuples: data tuples (also called passive tuples), like those
we’ve looked at so far, which contain static data, and process tuples, also known
as live tuples, which are under active evaluation. 

An eval operation creates a process tuple consisting of the fields specified as its
argument and then returns. This process tuple implicitly creates a process to
evaluate each argument. Actual implementations create a process only for
arguments consisting of a simple function call (and fulfilling some other
conditions which we’ll note later); all other fields in the eval are evaluated
sequentially.

While the processes run, the eval’s tuple is referred to as a live tuple; as each
process completes, its return value is placed into the corresponding field, and
once all fields are filled—all processes have completed—the resulting data tuple
is placed into tuple space. While it is not literally true that an eval creates the
processes that evaluate its arguments, it may be helpful to think of it this way.

For example, this eval statement will result in a process being created to evaluate
its third argument, f(i):

C Form Fortran Form
eval("test", i, f(i)); eval('test', i, f(i))

evals are often used to initiate worker processes, as in the following loop:

‡ And two variant forms which are discussed in Chapter 2.
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C Form Fortran Form
for (i=0;i < NWORKERS;i++) Do 5 I=1,NWORKERS
  eval("worker", worker());   eval('worker', worker())

5 Continue

This loop starts NWORKERS worker processes. In this case, the primary function of
the eval is simply to start the process, rather than to perform a computation and
place the result into tuple space. Formally, however, when each worker finishes,
a tuple of the form:

C Form Fortran Form
("worker", 0) ('worker', 0)

is placed into tuple space (assuming that the workers terminate normally and
adhere to the usual UNIX return value convention of zero for success).

The other two operations allow a process to access the data in tuple space. A rd
operation reads a tuple from tuple space, and an in operation removes a tuple
from tuple space.

Both rd and in take a template† as their argument. A template specifies what sort
of tuple to retrieve. Like tuples, templates consist of a sequence of typed fields,
some of which hold values (such fields are known as actuals)—either constants
or expressions which resolve to constants—and some of which hold placeholders
for the data in the corresponding field of the matched tuple in tuple space. These
placeholders begin with a question mark and are known as formals. When a
matching tuple is found, variables used as formals in the template will be
assigned the values in corresponding fields of the matched tuple.

Here is an example:

C Form Fortran Form
("simple", ?i) ('simple', ?i)

In this template, the first field is an actual, and the second field is a formal. If this
template is used as the argument to a rd operation, and a matching tuple is
found, then the variable i will be assigned the value in the second field of the
matched tuple.

A template matches a tuple when:

➠ They both have the same number of fields.
➠ The types, values, and length of all actuals (literal values) in the template 

are the same as the those of the corresponding fields in the tuple.
➠ The types and lengths of all formals in the template match the types and 

lengths of the corresponding fields in the tuple. 

† Also known as an anti-tuple.
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We’ll consider these conditions in more detail in Chapter 2; for now, let’s look at
some examples. If the tuple:

C Form Fortran Form
("cube", 8, 512) ('cube', 8, 512)

is in tuple space, then the statement:

C Form Fortran Form
rd("cube", 8, ?i); rd('cube', 8, ?i)

will match it and assign the value 512 to i, assuming that i is an integer.
Similarly, if j is an integer variable equal to 8, then the statement:

C Form Fortran Form
in("cube", j, ?i); in('cube',j, ?i)

will match it (again if i is an integer), assign the value 512 to i, and remove the
tuple from tuple space.

If more than one matching tuple for a template is present in tuple space, one of
the matching tuples will be used. Which one is non-deterministic; it will not
necessarily be the oldest, the most recent, or a tuple specified by any other
criteria. Programs must be prepared to accept any matching tuple, and to receive
equivalent tuples in any order. Similarly, repeated rd operations will often yield
the same tuple each time if the tuples in tuple space remain unchanged.

If no matching tuple is present in tuple space, then both rd and in will wait until
one appears; this is called blocking. The routine that called them will pause,
waiting for them to return.

Note that the direction of data movement for the in and out operations is from
the point of view of the process calling them and not from the point of view of
tuple space. Thus, an out places data into tuple space, and an in retrieves data
from it. This is similar to the general use of input and output in conventional
programming languages.

All data operations to and from tuple space occur in this way. Data is placed into
tuple space as tuples, and data is read or retrieved from tuple space by matching
a tuple to a template, not by, say, specifying a memory address or a position in a
list. This characteristic defines tuple space as an associative memory model.

The examples so far have all used a string as the first element of the tuple. This is
not required but is a good practice to adopt in most cases because it makes Linda
programs more readable and easier to debug. It also helps the Linda compiler to
easily separate tuples into discrete classes enabling more efficient matching.

The next chapter will look at more complicated tuples and tuple matching
scenarios and will present some simple examples of parallel programs using
Linda. 
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Piranha Piranha is an alternate parallel programming environment included as part of the
Network Linda product. Although the (theoretical) Piranha model is completely
general, and makes no assumptions about how parallel programs are organized,
SCIENTIFIC’s implementation shares many characteristics with Linda, as
described in the preceding section. Piranha uses tuple space for interprocess
communication, and Piranha programs use the in, out, and rd operations to
access it.

The central design goal of the Piranha model is the harnessing of idle CPU cycles
available on the nodes within a local area network. It is intended to be more
flexible than standard Network Linda in that the number of processes (piranhas)
participating in the parallel program execution can expand and contract during
the course of the run, in response to changing usage levels on each individual
system. For example, if a node becomes free after a Piranha program has started,
it can still join in the execution. On the other hand, if the load on a participating
node should increase during the run, execution of the Piranha program can
terminate on it without disturbing the other nodes or affecting the final program
results.

Unlike under Linda, Piranha programs do not use eval operations to initiate new
processes. In fact, they do not explicitly start worker processes at all; this
function is handled automatically by the Piranha system. Instead, Piranha
programs are structured around three key routines:

➠ feeder, which runs on the system where the user initiated execution. 
This routine usually creates and distributes tasks and gathers results, 
functioning much like the master we discussed in the previous section.

➠ piranha, which acts essentially as a worker. This is the routine run by 
the processes created by the Piranha system.

➠ retreat, which is called whenever a Piranha process must terminate in 
mid-execution because the system on which it is running is required for 
other purposes.

Piranha also provides the ability to prevent retreats from occurring within key
sections of the programs. Piranha programs are discussed in detail in chapter 6.
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2
Using the Linda Operations

In the last chapter we discussed the process of creating parallel programs from a
general point of view. We also introduced tuples and the main Linda operations.
In this chapter we will look at them in more detail and in the context of complete,
if simple, parallel programs.

Quick Start: Hello, world
In this section we’ll construct a parallel version of the canonical first example
program, hello_world. Here is the sequential version:

C Version main()
{
printf("Hello, world\n");
}

Fortran Version Program Hello_World
Print *, 'Hello, world'
End

It would be absurd to try to perform the “computation” done by this program in
parallel, but we can create a parallel version where each worker process executes
this program—and says “Hello, world”—at the same time. Here is a program that
does so:

C Version real_main(argc,argv)
int argc;
char *argv[];
{
int nworker, j, hello();
nworker=atoi(argv[1]);

for (j=0; j<nworker; j++)
eval("worker", hello(j));

for (j=0; j<nworker; j++)
in("done");

printf("hello_world is finished\n");
return(0); }
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Fortran Version Subroutine real_main
Integer I, NProc

Obtain number of workers & store in NProc
Do 10 I=1,NProc
  eval('worker', hello(I))

 10 Continue
Do 11 I=1,NProc
  in('done')

 11 Continue
Print *,'hello_world is finished'
Return
End

The first thing to notice about this program is its name and top-level structure:
real_main for the C-Linda, which requires that the top level routine be given
this name rather than the usual main. Similarly, the top-level Fortran Linda
routine is named real_main; note also that it is defined as a Subroutine, not
as a Program.

The C-Linda program requires one command line argument: the number of
worker processes to create (and to save space we’ve eliminated the code that
checks whether or not it got a valid argument). There are a number of ways that
the Fortran Linda version could obtain the number of worker processes; we
won’t dwell upon those possibilities at this point.

Next, the program’s first loop initiates nworker worker processes using the eval
operation, each executing the function hello. Here is hello:

C Version hello(i)
int i;
{
printf("Hello, world from number %d\n",i);
out("done");
return(0);
}

Fortran Version Subroutine Hello(ID)

Print *,'Hello, world from number ',ID
out('done')
Return
End

hello is only a minor variation of our original sequential program. It prints the
“Hello, world” message along with the number it was passed from real_main
(this integer serves as a sort of internal process number). Each message will look
something like this:

Hello, world from number 3
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The routine hello places a tuple containing the string “done” into tuple space
just before exiting. These tuples are then gathered up by the master process—
real_main—in its second loop. This technique has the effect of forcing
real_main to wait until all the worker processes have terminated before exiting
itself, a recommended Linda programming practice. Each in operation removes
one “done” tuple from tuple space, and it will block if none is currently present
and wait until some worker finishes and sends its tuple there. 

This same effect could have been achieved by means of a counter tuple which
each worker process increments as it finishes. In this case, real_main would
create and initialize the counter:

C Version Fortran Version
out("counter", 0); out('counter', 0)

and each worker would update it as its last action:

C Version Fortran Version
in("counter", ?j); in('counter', ?J)
out("counter", j+1); out('counter', J+1)

These statements remove the counter from tuple space, assign the current value
of its second field—the number of processes that have finished so far—to the
variable j, and then increment it and place the tuple back into tuple space. Note
that only one process can access the counter tuple at a time, and so some
processes may have to wait for others to finish before they can terminate. In this
case, the waiting time is minuscule, so for this program, the concern is a
non-issue. However, in general it is best to avoid building unnecessary
dependencies among processes into a program. 

With a counter tuple, the final loop in real_main would be replaced by the
statement:

C Version Fortran Version
in("counter", nworker); in('counter', NProc)

real_main will block until the counter tuple’s second field has its final value,
the number of worker processes. 

A third approach involves retrieving the final data tuples created after the eval’ed
processes exit, for example:

C Version Fortran Version
in("worker",?retval); in('worker', ?iretval)

This allows the program to examine the return code from the function started by
the eval operation. While it isn’t really necessary for a function as simple as
hello, it is a technique that is quite useful in more complex programs.
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Compiling and 
Running the 
Program

In order to run this program, we must first compile and link it. The C-Linda
compiler has similar syntax to standard C compilers. Its name is clc, and its
source files must have the extension .cl. Here is a clc command that would
compile the program in the file hello_world.cl:

C-Linda
Compilation

$ clc -o hello_world hello_world.cl

The -o option has the same meaning as with other compilers, so this command
would compile and link the source file hello_world.cl, creating the
executable program hello_world.

The Fortran Linda version of the program is created using the flc command:

Fortran Linda
Compilation

$ flc -o hello_world hello_world.fl do_args.f

Note that the extension on the Fortran Linda source file is .fl. As illustrated,
additional source files (Linda and non-Linda alike) may also be included on a
Linda compilation command line when appropriate.

Here is a sample run:

Program Execution $ hello_world 8
Hello, world from number 3.
Hello, world from number 1.
Hello, world from number 0.
Hello, world from number 4.
Hello, world from number 5.
Hello, world from number 2.
Hello, world from number 7.
Hello, world from number 6.
hello_world is finished.

It is to be expected that the messages from the various processes will display in
non-numerical order since we’ve done nothing to force them to display
sequentially. Linda programs are essentially asynchronous, and there is no
guarantee that a particular process will execute before any other. Indeed, we
would not want to do so, since we’re trying to achieve a simultaneously executing
parallel version of hello_world.

In order to run on a network, the program is compiled and linked in essentially
the same way, but running it requires using a slightly different command. For this
version, we might want to add the node name to the output line from each worker:

C Version gethostname(name,20);
printf("Hello, world from number %d running on %s.\n",i,name);

Here are the commands to create and run the modified program (C-Linda
version is shown):
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Program Execution
with Network Linda

$ clc -o hello_world hello_world.cl
$ ntsnet hello_world 8
Hello, world from number 4 running on moliere.
Hello, world from number 2 running on ibsen.
Hello, world from number 0 running on cervantes.
Hello, world from number 7 running on sappho.
Hello, world from number 3 running on blake.
Hello, world from number 1 running on virgil.
Hello, world from number 6 running on leopardi.
Hello, world from number 5 running on goethe.
hello_world is finished.

The ntsnet command initiates a Linda program on a network. ntsnet and its
configuration and options are described in detail in Chapter 4.

Linda Operations
This section describes the Linda operations we looked at in the previous chapter
in more detail, including some simple examples. Additional examples are given
in the next section, “Tuples and Tuple Matching.”

in The in operation attempts to remove a tuple from tuple space by searching for a
data tuple which matches the template specified as its argument. If no matching
tuple is found, then the operation blocks, and the process executing the in
suspends until one becomes available. If there are one or more matching tuples,
then one of them is chosen arbitrarily. The matching tuple is removed from tuple
space, and each formal in the template is set to the value of its corresponding
field in the tuple.

For example, this in operation removes a tuple having the string “coord” as its first
field and two other fields of the same type as the variables x and y from tuple
space; it also assigns the values in the tuple’s second and third fields to x and y
respectively:

C Version Fortran Version
in("coord", ?x, ?y); in('coord', ?x, ?y)

If no matching tuple exists in tuple space, then the operation will block. The
following tuple searches for the same sort of tuple, but specifies that the value in
its second field must match the current value of x:

C Version Fortran Version
in("coord", x, ?y); in('coord', x, ?y)
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rd The rd operation functions identically to in except that it does not remove the
matching tuple from tuple space. For example, the following rd operation will
attempt to match the same kind of tuple as in the examples with in, except that
this time the value in the second field must be 3:

C Version Fortran Version
rd("coord", 3, ?y); rd('coord', 3, ?y)

When the rd operation successfully matches a tuple, the value in its third field
will be assigned to the variable y. The tuple will remain in tuple space, available
for use by other processes.

out The out operation adds a tuple to tuple space. Prior to adding it, out evaluates all
of its fields, resolving them to actual values. out returns after the tuple has been
added to tuple space.

For example, the following out operation places a “coord” tuple into tuple space:

C Version Fortran Version
out("coord", 3, 10); out('coord', 3, 10)

If any of the fields in an out operation contain expressions, they are evaluated
before the tuple is placed into tuple space. For example, this out operation will
compute the value of the function f with the argument x, and then place a tuple
with that value in its third field into tuple space (the second field will of course
contain the current value of x):

C Version Fortran Version
out("coord", x, f(x)); out('coord', x, f(x))

The evaluation order of the fields is not defined and cannot be relied upon. For
example, in the following C-Linda out operation, x may or may not be
incremented before it is used as the argument to the function f:

C Version
out("coord", x++, f(x)); out('coord', g(x), f(x))

Similarly, in the Fortran Linda version, there is no way to determine which
routine will be called first should both f and g modify x. 

These sorts of constructions should be avoided.

No specified action is taken if tuple space is full when an out operation attempts
to place a tuple there. Current Linda implementations will abort execution and
print a diagnostic. Typically, such events are treated by programmers along the
lines of a stack or heap overflow in conventional programming languages: the
system is rebuilt with a larger tuple space. Future Linda versions may raise
exception flags. Under Network Linda, the size of tuple space is limited only by
the total available virtual memory of all participating nodes.
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eval As we saw in the previous chapters, an eval operation creates a process tuple
consisting of the fields specified as its argument and then returns. Here we’ll go
into more detail about how that happens.

Logically, the fields of an eval are evaluated concurrently by separate processes;
evaling a five-field tuple implicitly creates five new processes. When every field
has been evaluated, then the resulting data tuple is placed into tuple space.

In current Linda implementations, however, only expressions consisting of a
single function call are evaluated within the live tuple and actually result in a
new process. These functions may use only simple data types as their arguments
and return values (see below). All other fields are evaluated sequentially before
new processes are created.

Here is a typical eval statement:

C Version Fortran Version
eval("coord", x, f(x)); eval('coord', x, f(x))

This eval will ultimately result in the same data tuple as the out operation we
looked at previously. However, in this case, the eval operation will return
immediately, and a new process will evaluate f(x). By contrast, the out
operation will not complete until the evaluation of f(x) is complete and it has
placed the data tuple into tuple space.

Compare these two C-Linda loops:

Loop with out Loop with eval
for (i=0; i < 100; i++) for (i=0; i < 100; i++)
  out("f_values", i, f(i));   eval("f_values", i, f(i));

The loop on the left will sequentially evaluate f(i) for the first 100 non-negative
integers, placing a tuple into tuple space as each one completes. The loop on the
right will create 100 concurrent processes to evaluate the function f for each i
value. As each process finishes, the resulting data tuple will go into tuple space.

eval’s Inherited 
Environment

In C-Linda, the environment available to evaled functions consists solely of the
bindings for explicitly named parameters to the function. Static and global
initialized variables in the function are not currently reinitialized for the second
and following evals and thus will have unpredictable values. The created process
does not inherit the entire environment of its parent process. Thus, in the
preceding eval example, the environment passed to the function f will include
only the variable x. 
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Under Fortran-Linda, created processes inherit only the environment present
when the Linda program was initiated,† with no modifications due to execution
of user code. In many implementations, this is achieved by saving a clean copy of
the program image from which to clone new processes.

Consider the following program structure:

Block Data
Integer val
Common /params/val
Data val /5/
End

Subroutine real_main
Integer val
Common /params/ val

val = 1
Call f(3)
eval('worker', f(3))
...
Return
End

Subroutine F(I)
Integer val
Common /params/ val
...
Return
End

When subroutine f is invoked using the Call statement, the variable val will
have the value 1, since that value was assigned just prior to the call. However,
when the subroutine is invoked using the eval statement, the variable will have
the value 5, since that was its initial value at the inception of the program.

† Some distributed memory Linda systems satisfy these semantics exactly only when the 
number of evals does not exceed the number of processors.

eval Function 
Restrictions

evaled functions may have a maximum of 16 parameters, and both their
parameters and return values must be of one of the following types:

➠ C-Linda: int, long, short, char, float, double
➠ Fortran Linda: integer, real, double precision, logical

The first four C types may be optionally preceded by unsigned; the Fortran types
may include a length specifier (e.g. real*4). Note that no arrays, structures,
pointers, or unions are allowed as function arguments. Of course, data of these
types can always be passed to a process through tuple space. 
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The other fields in an eval are also limited to the data types in the preceding list
plus string constants.

Under Fortran Linda, subprograms appearing in an eval statement may be either
subroutines or functions. Subroutines are treated as if they were integer
functions always returning the value 0. Functions must return values of type
integer, logical, or double precision. Intrinsic functions may not be used in eval
statements.

C-Linda Alternate 
Operation Names

The alternate names __linda_in, __linda_rd, __linda_out, and __linda_eval are
provided for cases where the shorter names conflict with other program symbols.
(Each name begins with two underscore characters.)

Specifying Tuples and Basic Tuple Matching Rules
This section will discuss tuples and tuple matching rules in more detail and will
provide examples using a variety of data types.

Tuples may have a maximum of 16 fields. In C-Linda, tuple fields may be of any
of the following types:

➠ int, long, short, and char, optionally preceded by 
unsigned.

➠ float and double
➠ struct
➠ union
➠ Arrays of the above types of arbitrary dimension, 

including multidimensional arrays.
➠ Pointers must always be dereferenced in tuples.

In Fortran Linda, tuple fields may be of these types:

➠ Integer (*1 through *8), Real, Double Precision, 
Logical (*1 through *8), Character, Complex, Complex*16

➠ Synonyms for these standards types (for example, Real*8).
➠ Arrays of these types of arbitrary dimension, including 

multidimensional arrays, and/or portions thereof.
➠ Named common blocks

Formal Tuple 
Matching Rules

A tuple and a template match when:

➠ They contain the same number of fields.

➠ All corresponding fields are of the same type.

➩ The type of a field containing an expression is whatever type the
expression resolves to. The type of a field containing a formal is the
type of the variable used in the formal.
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➩ In C, for a structure or union field, the type is extended to include the
structure or union tag name. The tag name and size of structures
must match. Tagless unions and structures are not allowed.

➩ In Fortran, common blocks match based upon their name alone.
Their internal structure is not considered. 

➩ Arrays match other arrays whose elements are of the same type.
Thus, an array of integers will match only other arrays of integers and
not arrays of characters. Similarly, real arrays will not match integer
arrays, even when they contain the same length in bytes.

➩ Scalar types don’t match aggregate types. For example, if a is an array
of integers, then a:1 won’t match an integer (but a[2] in C and
a(2) in Fortran will). Similarly, in C, if p is a pointer to an integer,
*p and p:1 do not match (the :n array notation is discussed later in
this chapter).

➠ The corresponding fields in the tuple contain the same values as the 
actuals in the template.

➩ Scalars must have exactly the same values. Care must be taken when
using floating point values as actuals to avoid inequality due to
round-off or truncation. 

➩ Aggregate actuals such as arrays (which otherwise match) must agree
in both the number of elements and the values of all corresponding
elements. 

The following sections contain many illustrations of these matching rules.

Scalars The following C operations all place a tuple with an integer second field into the
tuple space:

int i, *p, a[20], f();
p = &i;

out("integer", 3); /* constant integer */
out("integer", i); /* integer variable */
out("integer", *p); /* dereferenced ptr to int */
out("integer", a[5]); /* element of an int array */
out("integer", f(i)); /* function returns an int */
out("integer", *++a); /* dereferenced ptr to int */

Note that single elements from an array are scalars of the type of the array. 
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The constructs &i and p are not included among these examples, since each of
them is a pointer to an integer, which are treated as arrays not as scalars (see the
next section). Thus, the following tuple and template will not match even though
p points to i (an integer):

("integer", p:1)
("integer", ?i)

Here are some example Fortran Linda operations involving scalars:

Real a(20), x
Integer i
Character *10 name

out('integer', i)
out('real', x)
out('real', a(6))
out('character', name)

Note that Fortran Character variables are scalars.

Arrays Array handling within tuples and templates is very easy. Here are some examples
of tuples and templates involving arrays:

C Examples char a[20];
int len;

out("array1", a:);
in("array1", ?a:);

out("array2", a:10);
in("array2", ?a:len);

Fortran Examples Dimension a(20)
Integer len

out('array1', a)
in('array1', ?a)

out('array2', a:10)
in('array2', ?a:len)

The general format for an array field in a tuple is name:length, where name is the
array name, and length is the length of the array (number of elements). As the out
operations in the examples indicate, the length is often optional. When it is
omitted, the entire length of the array is assumed. In C, you must still include the
colon when omitting the length, while in Fortran, the colon may also be omitted
(although including it is correct too). For example, the first out operation in each
language places the entire array a into the tuple space.
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If you only want to place part of an array into the tuple space, then you can
include an explicit length in the out operation. In this way, the second out
operation in each language places only the first ten elements of array a into the
“array2” tuple.

The array format is basically the same for arrays used as formals in templates. The
one difference is that an integer variable is used for the length parameter, and its
value is set to the length of the array in the matching tuple. Thus, the final pair of
in operations in the preceding example will both result in the value of len being
set to 10.

Pointers and 
Assumed-Size Arrays

C pointers to arrays and Fortran assumed-size arrays must always specify an
explicit length when they are used as an actual within a tuple, as in these out
operations:

C Examples char b[20], *p, d[30];
int len;

p = b;
out("array2", p:20);
in("array2", ?d:len);

Fortran Examples Dimension b(*), d(30)
Integer len

out('array2', b:20)
in('array2', ?d:len)

In both cases, the first twenty elements of array d are set to the value of the
corresponding element in array b, and the variable len is set to 20. This
requirement makes sense since these constructs can be used with arrays of
different sizes within the same program. 

The following out operations yield identical tuples:

C Examples int *p, a[20];
p = a;

out("array", a:);
out("array", a:20);
out("array", p:20);

Fortran Examples Integer a(20)

out('array', a)
out('array', a:)
out('array', a:20)

The length is required in the third C example; pointers must always specify an
explicit length.
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We could create a tuple containing the first ten elements of a with any of these 
operations:

C Examples int *p, a[20], b[20], c[10], len;
p = a;

out("ten elements", a:10);
out("ten elements", p:10);

Fortran Examples Integer a(20), b(*), c(10), len

out('ten elements', a:10)

and retrieve it with any of these operations:

C Examples in("ten elements", ?a:len);
in("ten elements", ?p:len);
in("ten elements", ?b:);
in("ten elements", ?c:);

Fortran Examples in('ten elements', ?a:len)
in('ten elements', ?a:)

All of the operations will retrieve ten integers, and len will be assigned the value
10 for those operations including it. Note that omitting the length variable is
allowed, and such statements still will retrieve whatever number of elements is
present in the “ten elements” tuple.

Assuming that the first ten elements of array b have the same values as the
corresponding elements of array a, the following in operations would consume
one of the “ten element” tuples without assigning any values:

C Example in("ten elements", b:10);

Fortran Example in('ten elements', b:10)

Here array b is used as an actual, and a matching tuple is simply removed from
the tuple space (assuming one exists). Note that there are better ways to remove
tuples from the tuple space without copying the data in them, as we will discuss
later.

Array references may begin with any desired element, as in these examples:

C Example in("ten elements", ? &b[4]:len);

Fortran Example in('ten elements', ?b(5):len)
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These operations would retrieve a “ten elements” tuple, place the ten array
elements it held into the fifth through fourteenth elements of array b, and set the
value of len to 10. Although the examples in this section have used integer arrays,
exactly the same principles and syntax apply when accessing arrays with
elements of other types. 

Note that retrieving a tuple containing an array longer than the target array used
in the template will result in writing past the end of the target array.

Multidimensional 
Arrays

In Fortran, array shape is ignored, and so multidimensional arrays can be handled
in a similar way to one-dimensional arrays. If you want to refer to a subsection of
a multidimensional array, you can do so by specifying a starting element and/or
length, but a more powerful mechanism for doing so is provided by the Fortran 90
array syntax, described in the next section. 

The remainder of this section will discuss multidimensional arrays in C.

In C, the basic principle to keep in mind is that multidimensional arrays match
only when their types and shapes are the same; the same holds true for sections
of multidimensional arrays. We will use these arrays in the examples:

int a[100][6][2], b[60][4][5], d[100][6][2];
 
The following operations create and retrieve a tuple containing a
multidimensional array:

out("multi", a:);
in("multi", ?d:);

The following in operation will not succeed because the shapes of arrays 
a and b are different (even though they have the same number of elements):

out("multi section", a:);
in("multi section", ?b:);/* WILL NOT WORK */

Portions of multidimensional arrays may also be specified. Here are some
examples:

int a[3][5][2], b[5][2], c[2], i;

out("section", a[0][0]:);
in("section", ?c:);

out("2d section", a[0]:);
in("2d section", ?b:);

out("not an array", a[0][0][0]);
in("not an array", ?i);    /* just a scalar ... */
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In the first pair of operations, the construct a[0][0]: points to the start of an
array of length 2 which is why the formal involving array c matches it. In the
second pair of operations, two 5x2 array sections (with the second one consisting
of the entire array b) will match.

The last example is a bit tricky; in this case, the out operation creates a tuple with
the first element of a as its second field, and any integer can be used in a formal
to retrieve it.

Fortran 90 Array 
Sections

Fortran-Linda recognizes a subset of the array syntax used in the Fortran 90
standard within its operations. This syntax provides an alternate way of referring
to arrays and their subsections and may not be combined with the name:length
notation we’ve considered so far.

Array subscript references in Fortran-Linda may take the following form:

[ifirst]:[ilast][:istride]

where ifirst is the smallest index of a slice of the array, ilast is the largest index in
the slice, and istride is the stride (if omitted, the stride defaults to 1). A full array
section is specified with this type of expression for each dimension in the array.
The shorthand form of a single colon alone refers to the entire range of values for
that array dimension with stride 1.

Here are some examples:

real a(100,100,100), b(100,100)

out('whole array', a(1:100,:,1:100))
out('second row', b(2:2,:))
out('divide in 2--part 1', a(:,:,:50)
out('divide in 2--part 2', a(:,:,51:)
out('every other', b(1:100:2,1:100)

The first out operation places the entire array a into the tuple space. The second
places only the second row of array b. The third and fourth operations divide
array a in half and place the two halves into the tuple space, defaulting the
beginning and ending elements in the third dimension to the first and last array
element, respectively. The final operation illustrates the use of the stride value.

Fortran Named 
Common Blocks

Entire named common blocks may be transferred to a tuple space as a single unit. 
Named common blocks are referenced by their common block name, enclosed in 
slashes. For example, the following operations place and retrieve the designated 
common block:

Common /example/a,b,c,d,n

out('common', /example/)
in('common', ?/example/)
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The out operation places the entire common block into the tuple space, and the
following in operation matches and retrieves this same tuple. For matching
purposes, common blocks with identical names match, and the internal structure
of the common block is ignored.

Blank common may not be placed into tuples using this method. The best solution
in such cases is usually to convert it to a named common block.

C Structures From the point of view of syntax, structures work very much like scalars. For
example, these two out operations create identical tuples:

struct STYPE s, t, *p;

p = &s;
out("structure", s);
out("structure", *p);

Either of these in operations will retrieve one of the tuples created by the previous
out operations:

in("structure", ?t);
in("structure", ?*p);

Structure fields are one way to create tuples containing one record of data. For
example, the following loop retrieves NREC records from a database and places
them into the tuple space. Each record is identified by the integer record number
in the tuple’s second field:

int i;
struct REC s;

for (i=0; i < NREC; i++) {
get_next_rec(&s);
out("record", i, s);

 }
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Structures may also be used as actuals in templates:

in("structure", t);

In this case, the structures in the tuple and template must have the same structure
tag, the same size, and they must be identical on a byte-by-byte basis, including
values in any padding bytes. When using such constructs, be careful to take
structure padding into account.

An array of structures is treated just like any other array:

int len;
struct STYPE s[20], t[20];

out("struct array", s:10);
/* matches; sets len = 10 */
in("struct array", ?t:len);

Varying-Length 
Structures

The colon notation may be used with structures to specify them as varying. In this
case, the length is taken to be the size of the structure in bytes. This construct was
designed for structures having varying arrays as their last elements.

Here are two examples:

struct STYPE {double a,b,c;
int buf_len;
int buf[1]; };

int bytes;
STYPE *s;

/* declared struct length */
out("varying struct", *s:);

bytes = sizeof(STYPE) + (sizeof(int) * (buf_len-1));
/* current structure length */
out("varying struct", *s:bytes);

The first out operation creates a tuple with a varying structure as its second field.
The second out operation creates a tuple whose second field is also a varying
structure; for this instance, the current length is set to the length of the defined
structure (using the declared length of 1 for the final array) plus the actual length
of that array (its length in turn is the product of its number of elements minus 1
and the size of one element). 
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C Character 
Strings

In keeping with C usage, character strings are simply arrays of characters, and the 
normal array considerations and matching rules apply. The only wrinkle comes 
when comparing string constants with character arrays.

The length of a string constant is the number of characters in it plus one, for the
null terminator. Thus, the string “hello” has a length of 6, and a five-element
character array will not match it; it requires a six element array:

char s[6];
int len;

out("string", "hello");/* length = 6 */
in("string", ?s);

The array colon notation may also be used with strings for fields where the length
of the string is variable:

out("string", "hi":);
in("string", ?s:len);

Note that the literal string in the out operation needed to include the colon in
order for the template in the in operation to match since the template does not
require a string of a specific length. This requirement holds for such templates
even when the length of the literal string in the tuple and the declared length of
the array used in the template are the same—even if hi had been hello, the
colon would still be needed in the out operation.

Anonymous 
Formals

A formal need not include a variable name, but instead may use a data type name
in C, and use a typeof construct with a data type name as its argument in
Fortran. Here are some examples:

C Examples struct STYPE s;

in("data", ?int);
in("struct", ?struct STYPE);
in("int array", ?int *:);

Fortran Examples Common /sample/array,num,junk

in('data', ?typeof(integer))
in('array', ?typeof(real*8):)
in('common', ?typeof(/sample/))

Such formals are called anonymous formals. Anonymous formals within in
operations still remove a tuple from the tuple space, but the data in that field is
not copied to any local variable. It is effectively thrown away. This construct can
be very useful when you want to remove a tuple containing, for example, a large
array from a tuple space. Anonymous formals allow it to be removed without the
time-consuming copying that would result from an in operation.
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A rd operation with a template containing only actuals and anonymous formals
has no effect if there is a matching tuple, but still blocks when none is available.

Fixed 
Aggregates in C

In C, fixed length aggregates such as arrays can be referenced in tuples simply by
name (i.e., without the colon notation). For example, if a is an array of declared
length 20, then it can be referred to in a tuple by its name alone, as in this
example:

int a[20], b[20];

out('array', a)

Such an array can similarly be retrieved by name:

rd('array', ?b)
in('array', ?a)

Multidimensional arrays and sections thereof may also be treated in this way:

int a[100][6][2], b[25][24][2];

out("multi section", a[0][0]);
in("multi section", ?b[0][0]);

In these statements, both arrays are being used essentially as pointers to the start
of a fixed aggregate of length 2. Two array sections treated as fixed aggregates in
this way must have the same length and shape in order to match.

Fixed aggregates never match arrays specified in the usual way. Fixed aggregates
match only other fixed aggregates. Literal character strings specified without a
terminal colon are treated as fixed aggregates. Thus, neither of the following in
operations will find a match:

char a[20], s[6];
int len;

out("wrong", a:);
out("also wrong", "hello");

in("wrong", ?a); /* no match */
in("also wrong", ?s:len); /* no match */
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Tuple Matching 
in an 
Heterogeneous 
Environment

There are some additional considerations that apply to tuple matching in an 
heterogeneous computer environment. The following characteristics of the 
computers can affect program behavior:

➠ Machine byte ordering (big endian versus little endian).
➠ Floating point representation.
➠ Structure alignment/padding differences.

By default, Linda uses Sun’s XDR external data representation and conversion
package on all data related to the tuple space (i.e., tuples and templates)
consisting of simple data types and arrays of simple data type. However, C
structures and unions and Fortran common blocks are not converted and must be
handled by the Linda program if matching across heterogeneous environments is
required.

You can do your own XDR conversion of structures and then pass them through
a tuple space as byte arrays if endianism or floating point formats differ among
computers where the program will run. Even when they do not, however, subtle
differences in structure alignment by the compilers on different computer
systems can still cause problems, particularly for varying length structures, where
internal padding may lead to unexpected behavior. Still, extreme care in
alignment of structure elements via explicit padding and the use of native
compiler alignment options can generally ensure proper matching behavior.

Termination of Linda Programs
Since a Linda program can consists of many concurrent processes, program
termination requires a bit more care than for sequential programs. Linda
programs can terminate in one of three ways:

➠ The program can terminate normally when the last process (usually
real_main) finishes (returns from its outermost call). A program may
terminate by having the final process call the C-Linda support function
lexit (flexit is the Fortran Linda form), but this is not required. Note
that if an exit function call is desired, it should always be to lexit and
never to the standard system call exit.

➠ The program can force termination by calling lhalt (C) or flhalt
(Fortran). When such a call occurs in any process of the Linda program,
the entire computation will be terminated immediately and
automatically.

➠ If any process terminates abnormally, then the entire program will again
be terminated automatically at once.

An individual process within the parallel program may terminate by calling
lexit or flexit. This function terminates the current process without
affecting the other running processes (if any).
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See the section “Support Functions” in Chapter 6 for full details on available
termination routines and their use.

Example: Freewake
We’re now ready to look at another Linda program which illustrates all four
operations and several tuple matching principles in action. This program also
illustrates the following techniques:

➠ The master process becoming a worker after initialization is complete.
➠ The use of a composite index to combine two existing indices.

The program we’ll examine is named Freewake, a computational fluid dynamics
application. It was developed to model the wake structure created by helicopter
rotor blades and its influence on the blades themselves to aid in the design of
new helicopters. It was originally parallelized with C-Linda, but we will provide
both C-Linda and Fortran Linda versions here.

At its core, the calculation is essentially a very complex N-body problem: the
wake surface is divided into a large number of discrete elements. The structure of
this surface depends on the properties of the individual elements, including their
velocities. For each time step, the change in velocity of each element is a
function of its interactions with all of the other elements, and all of these changes
in velocity determine the new structure of the wake surface. Once it is obtained,
the program calculates the interaction of the wake and the blades themselves. 

The vast majority of the computation is spent calculating the displacement of
each point of the wake for each time step.‡ This is computed by these three
nested loops. Here is the original Fortran code:

DO I = 1, NBLADES! Typically = 2
DO J = 1, NFILMNT! Typically = 16
DO K = 1, NSEGMNT! Typically = 512

CALL CALCDISP( X(I,J,K), Y(I,J,K), Z(I,J,K),
DX(I,J,K),DY(I,J,K),DZ(I,J,K))

END DO; END DO; END DO

The subroutine CALCDISP calculates the displacement of a single point in three
dimensional space. Each call to CALCDISP is independent. It takes the x, y, and
z-coordinates of a point in space (elements of the arrays X, Y, and Z,
respectively), and produces the displacement in each direction of the specified
point in space as its only output (elements of the arrays DX, DY, and DZ). Thus,
performing some of those calls at the same time would have a large effect on
overall program performance. 

‡ See the Appendix for information about determining the most computationally intensive 
portions of a program.
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Here is the key part of the code which serves as the master process and
coordinates the calls to CALCDISP:

C Version /* put data into tuple space */
out ("wake", x, y, z, nblades, nfilmnt, nsegmnt);

out ("index", 0) /* create task counter */
for (i = 0; i < NWORKERS; i++) /* start workers */

eval("worker",worker());
worker(); /* then become a worker */

for (index = 0; index <= nblades * nfilmnt; index++) {
/* gather data from tuple space */
in("delta", index, ?tmp_x, ?tmp_y, ?tmp_z);
Put data into the displacement arrays DX, DY, and DZ.
}

Fortran Version C Put data into tuple space
out('wake', x, y, z, nblades, nfilmnt, nsegmnt)

C Create task counter, start workers, then become
C a worker yourself.

out('index', 0)
Do 10 I=1,NWORKERS

eval('worker', worker())
 10 Continue

Call worker

Do 20 index=0,nblades*nfilmnt-1
in('delta', index, ?tmp_x, ?tmp_y, ?tmp_z)
Put data into the displacement arrays DX, DY, and DZ.

 20 Continue

The first out operation places the position arrays x, y, and z into tuple space in
the “wake” tuple; later, the workers will each rd it. Then, the master process
creates the “index” tuple, from which the workers will generate tasks. In the first
for loop, the master process next starts NWORKERS worker processes.

At this point, the master process has completed all necessary setup work, so it
becomes a worker itself by calling the same worker function used in the eval
operations. This is a common technique when few startup activities are required,
and worker processes run for a long time. If the master did not become a worker,
then its process would remain idle until the workers finished.

After the workers finish, the master process executes the final for loop, which
gathers the results produced by all the workers, removing them from tuple space
and placing them in the locations expected by the original Fortran program. 
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Here is a simplified version of the worker routine:

C Version worker()
{
rd("wake", ?x, ?y, ?z, ?nblades, ?nfilmnt, ?nsegmnt);

while (1) { /* loop until work is done */
in ("index", ?index); /* get current task index */
out("index", index+1); /* increment and put back */
if (index >= nblades * nfilmnt) /* test if done */

break;

iblade = index / nfilmnt; /* blade */
ifil = index % nfilmnt; /* filament */
for (iseg=0; iseg<nsegmnt; iseg++) /* segment */

calcdisp_(&x[iseg][ifil][iblade], 
&y[iseg][ifil][iblade], &z[iseg][ifil][iblade],

   &dx[iseg], &dy[iseg], &dz[iseg], &x, &y, &z);
/* place results in tuple space */
out("delta", index, dx, dy, dz);
}

}

Fortran Version Subroutine worker
Double Precision x(*), y(*), z(*)

rd('wake', ?x, ?y, ?z, ?nblades, ?nfilmnt, ?nsegmnt)

Do 10 I=1,VERY_BIG_NUM
in('index', ?index)
out('index', index+1)
if (index .GE. nblades*nfilmnt) Return

iblade=(index / nfilmnt) + 1
ifil=modulo(index,nfilmnt)+1
Do 20 iseg=1,nsegmnt

call calcdisp(x(iblade,ifil,iseg),
     * y(iblade,ifil,iseg), z(iblade,ifil,iseg),
     * dx(iblade,ifil,iseg), dy(iblade,ifil,iseg),
     * dz(iblade,ifil,iseg))
 20 Continue

out('delta', index, dx, dy, dz)
 10 Continue

Return
End
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Each worker process first reads the position arrays and their index limits from
tuple space. The worker then loops continuously until all points are done. At the
beginning of each loop, it removes the “index” tuple from tuple space,
increments the counter in its second field, and then returns it to tuple space for
possible use by other processes.

This counter, stored in the variable index, serves as a composite index,
combining the outer two loops of the original Fortran code. Each task consists of
executing the inner Fortran loop for a fixed pair of I and J values (i.e., specific
blade and filament indices). A single counter tuple is easily retrieved,
incremented, and returned to tuple space.

There are NFILMNT times NBLADES distinct pairs of I and J values, so the
worker first tests whether the counter’s value is greater than or equal to this
product; equality is included in the test since index begins at 0 and runs to
(nfilmnt*nblades)-1 (we’ve given the equivalent variables in the Linda
programs lowercase names). The variable iblade is defined as index divided
by nfilmnt, and ifil is defined as index modulo nfilmnt. Because these
are integer operations and all fractions are truncated, iblade will remain 0 until
index reaches nfilmnt, then become and remain 1 until index reaches
nfilmnt*2, and so on. At the same time, ifil counts from 0 to nfilmnt-1
for each value of iblade over the same period. The following table indicates the
encoding of iblade and ifil within index for nfilmnt=3 and nblades=2.

blade filament
index iblade iseg

0 0 0
1 0 1
2 0 2
3 1 0
4 1 1
5 1 2
6 terminate

Once iblade and ifil are computed, a for loop calls a slightly modified version
of the original calcdisp routine once for each segment value, using the
computed iblade and ifil values each time. In the C-Linda version, this loop
differs from the Fortran inner loop it replaces in several ways. First, the
arguments to calcdisp are explicitly the addresses of the relevant array
elements, since Fortran subroutine arguments are always passed by reference.
Second, the first and third array indices are reversed, due to the differing Fortran
and C multidimensional array ordering conventions. The Fortran arrays have not
changed in any way, so the location denoted by the Fortran X(i1,i2,i3), for
example, must be accessed as x[i3][i2][i1] from C. Third, C arrays begin at
0 while the Fortran arrays begin at 1. However, this is easily accounted for by
making iseg run from 0 to nsegmnt-1 rather than from 1 to nsegmnt (as it
did in the Fortran loop). Fourth, we’ve also added the addresses of the arrays x,
y, and z to the subroutine’s arguments (in Fortran, CALCDISP accesses them via
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a COMMON block not shown here). Finally, we’ve translated the subroutine
name to lowercase and appended an underscore, a common requirement when
calling a Fortran subroutine from C.

After the inner loop completes, the worker sends the displacement values it has
created to tuple space, and the outer loop begins again. When the counter in the
“index” tuple exceeds its maximum value, each worker process will terminate
the next time it examines it.

As we’ve seen, it was very easy to transform Freewake into a parallel program
with Linda because all of its work is isolated so well within a single routine. In the
next chapter we’ll look at several more complicated case histories.

Predicate Operation Forms: inp and rdp
inp and rdp are predicate forms of in and rd respectively (that’s what the p stands
for). They attempt to match the template specified as their argument to a tuple in
tuple space in the same way as in and rd, and perform the same actual-to-formal
assignment when a matching tuple is available. As expected, inp removes the
matching tuple from tuple space, while rdp does not. When either of them
successfully matches a tuple, it returns a value of 1 in C and .TRUE. in Fortran.

If no matching tuple is available, inp and rdp will not block. Rather, they will
return a value of 0 (C) or .FALSE. (Fortran) and exit. Using inp and rdp can
complicate your program, because they tend to introduce timing dependencies
and non-deterministic behavior that may not have been intended.

For example, consider the following C-Linda code fragments:

/* Master code */ 
real_main() 
{  

...
for (i=0; i<tasks; ++i) out("task", i);

out("tasks outed");
... 

}

/* Worker code */ 
worker() 
{   

...
rd("tasks outed");
while (inp("task", ?i)) 

do_task(i); 
}
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Clearly, if the rd of the “tasks outed” tuple were omitted, the the worker code
would be non-deterministic.  It might get any number of tasks before the loop
terminated, which is not the intent.  What is perhaps less clear is that the
program is still non-deterministic even with the rd.  This is due to the fact that
out is asynchronous. There is no guarantee that all of the task tuples will be in
tuplespace before the “tasks outed” tuple arrives.

It is a far better programming practice to use a counter or semaphore tuple in
situations where inp or rdp seems called for. Consider this C-Linda example:

if (rdp("globals", ?x, ?y, ?z)==0)
do_globals(x,y,z);

If the “globals” tuple is not available in tuple space, then rdp returns 0 and the
process computes the globals itself. Simply doing a rd would result in blocking if
the “globals” tuple weren’t available, and recomputing them may be faster than
waiting for them (although slower than reading them). The same effect can be
accomplished via a tuple that can take on one of two values, for example:

("globals_ready", 0 or 1)

The master process outs this tuple with value 0 at the beginning of the program,
and the process that computes the globals and sends that tuple to tuple space
also ins this tuple and outs it again, changing its second field to 1. Then, the
preceding code can be replaced by:

rd("globals_ready", ?i);
if (i)

rd("globals", ?x, ?y, ?z);
else

do_globals(x,y,z);

In C-Linda, the alternate operation names __linda_inp and __linda_rdp are
available for inp and rdp respectively should the shorter names pose a conflict
with other symbols.
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3
Case Studies

This chapter provides detailed discussions of several real applications parallelized
with Linda. In some cases, the descriptions will follow the programming process
recommended in Chapter 1 by first transforming a sequential program into a
parallel program in a straightforward manner and then, if necessary, optimizing it
to produce a more efficient parallel program; in others, we’ll focus on topics and
issues of special importance. Space limitations will not allow for a full treatment
of any of these programs, but these case studies will illustrate many important
techniques useful to any programmer working with Linda. 

Ray Tracing
Image rendering is a very computationally intensive application. The Rayshade
program, written in C, renders color images using ray tracing. It is capable of
including texturing effects to simulate different materials in the image, multiple
light sources and types (point, spotlight, diffuse), and atmospheric effects like fog
or mist. Rayshade computes the effects of all of these factors on the image, also
taking into account reflections and shadows.

This case study illustrates the following techniques:

➠ Dividing the main task among the workers.
➠ Adapting the sequential program structure to the master/worker 

paradigm.

Here is Rayshade’s main routine:† 

main(argc, argv)
{
Setup.
parse_options(argc, argv);
read_input_file();
Initialization.
startpic(); /* start new picture */
More setup.
raytrace();
}

† As mentioned in the Introduction, we’ve removed some sections of code and replaced 
them with descriptive comments, and we’ve ignored others (like declarations) altogether.
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After some initial setup, Rayshade processes the command line options,
validating them for correctness and determining which options have been
selected. It then reads in the image and then performs some additional
initialization steps.

Next, Rayshade calls the function startpic, which logically creates a new
picture, followed by some additional setup activities. Finally it calls raytrace
which initiates the actual rendering.

The bulk of the work is handled by the routine do_trace, called by raytrace:

do_trace()/* called by raytrace */
{
Set sampling parameters.
/* Trace each scanline, writing results to output file. */
for (y = StartLine; y >= 0; y--) {

trace_jit_line(y, out_buf);
outline(out_buf);
}

}

After testing and setting parameters controlling the sampling for this rendering
operation, do_trace’s main loop executes. For each scan line in the final image,
it calls trace_jit_line and outline. The former handles the ray tracing
computations, through many subordinate routines, and outline writes the
completed line to a file.

This sequential program already divides its work into natural, independent units:
each scan line of the final image. The parallel version will compute many
separate scan lines in parallel. We’ll look at how Rayshade was restructured to
run in parallel in some detail.

To begin with, a new real_main routine was created. This is not always
necessary; sometimes it is best just to rename the existing main to real_main.
In this case, main was renamed rayshade_main, and real_main calls it. This
was done because the original main routine needs to be called by each worker
process, as we’ll see.

Here is real_main:

real_main(argc, argv)
{
for (i = 0; i < argc; ++i)

strcpy(args[i], argv[i]);
out("comm args", args:argc);
return rayshade_main(argc, argv, 0);
}
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real_main’s tasks are very simple: place a copy of the command line arguments
into tuple space—accomplished by copying them to a local array, which is then
used by the out operation—and then call rayshade_main with its original
arguments and one additional new one.

Here is rayshade_main (the additions made for the C-Linda version are in
boldface):

rayshade_main(argc, argv, worker)
{
Setup.
parse_options(argc, argv);
read_input_file();
Initialization.
if (worker)

return;

/* Start new picture */
startpic();
More setup.
raytrace();
}

The third argument is a flag indicating whether the caller is a worker process or
not (a value of 1 means it is a worker). This flag is used to ensure that the worker
exits at the proper time, and the remaining initialization steps are executed only
at the beginning of the job.‡

A few lines were also added to parse_options to handle additional options
specifying the number of workers to use for the parallel version.

rayshade_main still ends by calling raytrace. No changes were made in that
routine, but a lot was done to the support routine do_trace that raytrace
calls.

do_trace becomes the master process in the parallel version of Rayshade. It’s
important to note that the master does not always need to be the top-level
routine real_main or even the original main function; any routine can become
the master process.

‡ While this program structure having the workers each call the main routine is unusual, 
the technique of having workers repeat the setup code is not, because it is often faster.
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Here is do_trace:

do_trace()
{
out("JitSamples", JitSamples);
out("TopRay", TopRay);
for (i = 0; i< Workers; i++)

eval("worker", worker());
out("scaninfo", StartLine);
for (y = StartLine; y >= 0 ; y--) {

in("result", y, ? out_buf:);
outline(out_buf);
}

}

The new version begins by placing two parameters needed by lower level
routines into tuple space. The worker processes will read them and pass them
along to the routines that need them. The function then starts Workers worker
processes, each running the routine worker.

Once the workers have all started, do_trace creates the task tuple “scaninfo”;
as in Freewake, Rayshade uses a counter tuple to indicate which task—in this
case, which scan line—should be done next. Here the counter is initially set to
the maximum scan line number to be computed; each worker will decrement the
counter as it grabs a task, and when the counter falls below 0, all tasks will be
complete.

The second for loop gathers completed scan lines from tuple space, again
counting down from the maximum scan line number, and sends each one to the
output file. The lines need to be gathered in order so that they are placed into the
file in the proper location; they may not arrive in tuple space in that order,
however, so do_trace may spend some time blocked.

The last piece needed for the parallel version of Rayshade is the worker
function:

worker() 
{
rd("comm args", ? args: argc); 
for ( i = 0; i < argc;++i)

argv[i] = (char *)(args+i);
rayshade_main(argc, argv, 1);
rd("TopRay", ? TopRay);
rd("JitSamples", ? JitSamples);
Set sampling parameters.
while (1) {

in("scaninfo", ? y);
out("scaninfo", y-1);
if (y < 0)

break;
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trace_jit_line(y, out_buf);
out("result", y, out_buf:Xres);
}

return;
}

The worker begins by reading the command line arguments from tuple space into
a local array with the rd operation. It then calls rayshade_main to perform the
necessary initialization and setup activities. It is often just as fast to have
workers each repeat the sequential program’s initialization process rather than
doing it only once and then attempting to transmit the results of that process to
the workers through tuple space. 

However, when you choose to have the worker repeat the program initialization,
it is important not to repeat steps which must occur only once. Here, the workers
call rayshade_main with a third argument of 1, ensuring that picture
initialization is not repeated. 

The worker function next retrieves the global parameters from tuple space, and
sets the sampling parameters, using the same code as originally appeared in
do_trace.

Each iteration of the while loop computes one scan line of the final image and
places it into tuple space for later collection by the master process (executing
do_trace). It removes the “scaninfo” counter tuple from tuple space,
decrements it, and puts it back so that other processes can use it. If the counter
has fallen below zero, all scan lines are finished, the loop ends, and the worker
returns (terminating its process).

If the counter is non-negative, the worker generates that scan line by calling the
same routine used by the sequential program. However, instead of an immediate
call to outline, the computation is followed by an out operation, placing the
results into tuple space. Sometime later, do_trace will retrieve the line and
then make the call to outline to write it to the output file. Meanwhile, the
worker has started its next task. It will continue to perform tasks until all of them
are done.

worker bears a striking resemblance to the original version of do_trace; it
adds a call to rayshade_main unnecessary in the sequential version, and it
lacks only the call to outline from its main loop (which remains behind in the
master process version of do_trace). This separation results from the need to
pass data between master and workers via tuple space. (It is also much easier to
code than sending explicit messages between all of the various processes.)
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Matrix Multiplication
Matrix multiplication is a common operation central to many computationally
intensive engineering and scientific applications. We’ve already looked at matrix
multiplication in a general way in Chapter 1. Here we will look at a couple of
approaches to parallel matrix multiplication, and conclude by considering when
one should—and should not—use them. This example again uses C-Linda.

This case study illustrates the following techniques:

➠ Adjustable granularity and granularity knobs.
➠ Deciding where in a program to parallelize.

The basic matrix multiplication procedure is well-known: multiplying an L by M
matrix A by an M by N matrix B yields an L by N matrix C where Cij is the dot

product of the ith row of A and the jth column of B. We won’t bother translating
this procedure into a sequential C program.

Instead, let’s look at a simple, straightforward parallel matrix multiplication.
Here is the master routine:

real_main()
{
read_mats(rows,columns,l,m,n);

for (i=0; i< NWORKERS; i++)
eval("worker", worker(l,m,n));

for (i=0; i < l; i++)
out("row",i,rows[i]:m);

out("columns",columns:m*n);

out("task",0);

for (i=0; i < l; i++)
in("result", i, ?result[i]:len);

}

The function begins by reading in the matrices (we’re ignoring the details of how
this happens). Next, it starts the worker processes, places each row of A and the
entire B matrix into tuple space, and then creates the task tuple. Finally it
collects the rows of C as they are completed by the workers.

The worker process begins by rding the B matrix from tuple space. After doing
so, it enters an infinite loop from which it will exit only when all tasks are
completed.
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Each task consists of computing an entire row of C, as specified by the task tuple.
The worker process retrieves this tuple, increments its value, and places it back
into tuple space, checking to make sure it is not already greater than the
maximum number of rows to be computed:

worker(l,m,n)
{
rd("columns",?columns:len);

while (1) {
in("task",?i);
if (i >= l) {

out("task", i);
break;

else
out("task", i+1);

rd("row", i, ?row:);

for(j=0; j < n; j++)
result[j]=dot_product(row,columns[j*m],m);

out("result",i,result:n);
}

return;
}

The worker next reads in the row of A that it needs. Its final loop computes each
element of the corresponding row of C by forming the dot product. When all of its
entries have been computed, the worker sends the completed row of C to tuple
space and begins the next task. 

Unfortunately, this version has a disadvantage that not only inhibits it from
always performing well, but sometimes even prevents it from running at all. It
assumes that each worker has sufficient local memory to store the entire B
matrix. For large matrices, this can be quite problematic. For such cases, we
could modify the master to place each column of B into a separate tuple, and
have the workers read them in for each row of A, a column at a time, but this
would add significant communications overhead and probably yield poor
performance. Instead, a more flexible program is needed where the amount of
work done in each task can be varied to fit memory limitations and other
restrictions imposed by the parallel computing environment.

Here is a version which fulfills this goal:

master(l, m, n)
{
Allocate memory for matrices.
Read in matrices.
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/* put matrices into tuple space */
for (i = 0; i < l; i += clump, 

rows+=m*clump, columns+=m*clump) {
out(i, "rows", rows:m*clump);
out(i, "columns", columns:m*clump);
} 

 /* start workers and make first task */
for (i=0; i < workers; ++i)

eval("worker", worker(l, m, n, clump));

out("task", 0);  

for (i = 0; i < l; i += clump, result+=m*clump)
in("result matrix", i, ? result:);

}

The master begins by allocating memory for and reading in the matrices. Next, it
places the matrices into tuple space in chunks, each of which is clump rows or
columns† of its matrix. clump functions as a granularity knob in this program: a
parameter whose value determines the task size, at least in part. Changing
clump’s value directly affects how large each chunk is. 

The master then starts the workers and creates the task tuple as before. Its final
loop retrieves the result matrix (C) from tuple space, again in chunks of clump
rows.

Here is the corresponding worker function:

worker(l, m, n, clump)
{
Allocate memory for matrix chunks.
while (1) {

in("task", ? rows_index);
if (rows_index < l) 

out("task", rows_index + clump);
else {

out("task", l);
return;
}

rd(row_index, "row", ?row:);

† Both versions of this program assume that A is stored by row in the rows array, and B is 
stored by column in the columns array. Such a strategy makes accessing the proper 
elements of each one much easier.
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for (col_index = 0; col_index < n; col_index += clump) {
rd(col_index, "columns", ? columns:);  
for (r = 0; r < clump; ++r) {

result_ptr = result + ((r + col_index) * m);
for (c = 0; c < clump; ++c){

dot = 0;
rp = rows + (r * m); 
cp = columns + (c * m); 
for (i = 0; i < m; ++i, ++rp, ++cp)

dot += *rp * *cp;
*result_ptr++ = dot;
}

}

/* Put a block of the result matrix into tuple space */
out("result", rows_index, result:m*clump);
} /* end while */
} /* end worker */

The worker begins by retrieving a task (and exiting if all tasks are already done).
It reads the corresponding tuple from tuple space (containing clump rows of A).
It then reads the columns of B, in chunks of clump columns at a time (as they
have been partitioned into tuples). For each chunk, all corresponding elements
of the result matrix are computed; when all of the chunks of the columns array
(holding B) have been read and processed, the worker sends the completed
chunk of the result matrix to tuple space and begins the next task.

The variable clump can get its value in any number of ways: from a preprocessor
variable, from a command line argument, as some function of the sizes of the
matrices, and so on. It allows you to adjust program execution in a number of
ways. For example, if local memory for worker processes is limited, clump could
be chosen so that the portions of A and B a worker held at any given time
(2*clump*m total elements) would fit within the available amount. Or if the
program were running on a network containing processors of greatly differing
speeds, then it might sometimes be preferable to make the task size smaller so
that there are enough total tasks to keep every processor busy for essentially the
entire execution time (with faster processors completing more tasks in that
time). Building such adjustability into a program is one way to ensure easy
adaptability to different parallel computing environments.

Even this version makes some optimistic assumptions, however. For example, it
assumes that the master process has sufficient memory to read in both matrices
before sending them to tuple space. If this assumption is false, then the disk
reads and out operations would need to be interleaved to minimize the amount
of data the master has to hold in local memory.

We’ll close this consideration of parallel matrix multiplication by looking at a
case where one might not want to use it. Here is a portion of a subroutine from a
computational chemistry program (written in Fortran):
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Subroutine gaus3(x,n)

Loops containing many independent exponentials
call matrix_multiply(chi,coo,psi)
call matrix_multiply(chix,coo,gx)
call matrix_multiply(chiy,coo,gy)
call matrix_multiply(chiz,coo,gz)
call matrix_multiply(chid2,coo,d2)
Return
End

Here are five independent matrix multiplication operations. Certainly, it would
be nice to produce a parallel version of this program, but the question is: where
to parallelize? We could replace each matrix multiplication call with a parallel
version, or execute all five calls simultaneously. In some circumstances, each of
these solutions will be the right one.

Here, however, we’d also like to execute some of those exp calls in parallel as
well, which would tend to favor the second approach: creating a parallel version
of gaus3 that might very well use a sequential matrix multiplication routine.

There is a third possibility as well. gaus3 is itself called a large number of times:

Do 10 I=1,npts
call gaus3(x,m)

 10 Continue

and again the calls are independent of one another. It might be possible to
execute some of these calls in parallel, leaving gaus3 essentially untouched.
Whether this is a good idea or not depends on the likely value of the loop’s upper
limit, npts. If npts is typically, say, 8, then parallelizing at this point will limit
the number of processor which the program could take advantage of to 8, and so
it is probably better to parallelize gaus3 itself. If, on the other hand, npts is
typically 500000, then this is a perfectly good place to focus attention, and the
job will be much simpler as well.
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Database Searching
This case study looks at a generalized database search program. What the
particular data records are is less important than the general issues all such
searches raise, many of which are applicable to other types of problems as well.
Readers wanting a more rigorous and specific treatment of this topic should
consult Chapters 6 and 7 of How to Write Parallel Programs by Carriero and
Gelernter.

This case study discusses the following techniques and issues:

➠ Distinct task tuples.
➠ Using watermarking to avoid overwhelming tuple space.
➠ Task ordering to aid in load balancing.
➠ Dealing with unequal task sizes.

Here is a simple sequential program (in Fortran) to search a database:

Program DB_Search

Call Get_target(target)
10 Call Get_next(DB, rec)

If (rec .EQ. EOF) go to 100
Call Compare(target,rec,result)
Call Process(result)
Goto 10

100 Continue

This program compares a target record (or key) against records in a database.
The following discussion assumes that the operation of comparing two data
records takes a substantial amount of time. Many such database applications
exist, including ones designed for DNA sequence searching, credit application
retrieval, and many other sorts of complex string matching.

The program hides all the details of the operation in its component subroutines:
get_next_record retrieves another record from the database, compare
compares the record to the target, and process takes compare’s result and
keeps track of which record(s) have matched (or come closest to matching) so
far. When all relevant records have been tested, output will print the final
results.

This version could search any kind of database, given appropriate versions of
get_next_record, compare, and process. get_next_record could be
implemented to return every record in the database in sequential order, or
according to some sorting criteria, or it could return only selected records—
those most likely to match the target, for example (think of searching a database
containing fingerprints).
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compare might return a yes or no answer, depending on whether target matched
the current record or not, or it might return some value indicating how close a
match the two were. In the first case, process would only need to keep track of
positive results—matches—while in the second it would probably want to report
on some number of best matches at the conclusion of the program.

Transforming this program into a parallel version is fairly straightforward. Each
task will be one comparison. This time, we’ll use one tuple for each task, holding
the actual database record, rather than a single counter tuple. Here is the parallel
master routine:

Subroutine real_main

Do 10 I=1,NWORKERS
eval('worker', worker())

10 Continue
Call Get_Target(target)
out('target', target)

NTasks=0
20 Call Get_Next(DB,Rec)

IF (Rec .EQ. EOF) Go TO 30
out('task', rec, OK)
NTasks=NTasks+1
Goto 20

30 Do 40 I=1,NTasks
in('result', ?res)
Call Process(res)

40 Continue

DO 50 I=1,NWORKERS
out('task', dummy, DIE)

50 Continue
Return
End

This program first starts the workers, gets the target, and places it into tuple
space. Then it loops, retrieving one record from the database and creating a
corresponding task tuple until there are no more records. Then it retrieves the
results generated by the workers from tuple space and hands them to process.

Finally, in its final loop, the master process generates one additional task tuple
for each worker. These tasks serve as poison pills: special tasks telling the
workers to die. The task tuple’s third field holds either the value represented by
OK, meaning “this is a real task,” or the one represented by DIE, meaning
terminate.
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Here is the corresponding worker:

Subroutine worker

rd('target', target)

DO While(.TRUE.)
in('task', rec, flag)
If (flag .EQ. DIE) Goto 100
Compare(rec, target, result)
out('result', result)

EndDo

100 Continue

The worker loops continuously, reading tasks and comparing records, placing the
results into tuple space for the master to gather later, until it encounters the
poison pill, at which point it exits.

Straightforward as this version is, it has some potential pitfalls. The most serious
occurs if the database has large records, or large numbers of records, or both. In
either case, the master could easily generate tasks much faster than the workers
could complete them, and fill up tuple space in the process, causing the program
to run out of memory and terminate.

A technique known as watermarking can provide protection against this
eventuality. Watermarking involves making sure that there are no more than a
fixed number of task tuples at any given time (the high water mark, so to speak).
Once this limit is reached, the master process must do something else—such as
gathering results—until the number reaches a lower bound (the low water mark),
at which time it can go back to creating tasks. When the number of tasks once
again reaches the upper bound, the process repeats.

Here is a version of the master process with watermarking:

20 Call Get_Next(DB,Rec)
IF (Rec .EQ. EOF) Go TO 30
out('task', rec, OK)
NTasks=NTasks+1
IF (NTasks .LE. UPPER_BOUND) Goto 20
DO While(NTasks .GT. LOWER_BOUND)

in('result', res)
Call Process(res)
NTasks=NTasks-1

EndDo
Goto 20

30 Do 40 I=1,NTasks
in('result', ?res)
Call Process(res)

40 Continue
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Creating a new task increments the ntasks counter. Once it reaches its
maximum value, the master switches over to gathering and processing results,
decrementing the ntasks counter, which now holds the number of outstanding
tasks, since every time the master finds a result tuple, it can be sure a task has
been consumed. When the number of outstanding tasks reaches its minimum
allowed value, the do loop ends, the master begins to make new tasks, and the
process begins again.

After all needed tasks have been created, the master still needs to gather any
remaining results from tuple space, which is the purpose of the second while
loop.

UPPER_BOUND and LOWER_BOUND allow this program to adapt to its
environment. Their values can be adjusted based on the size of tuple space, on
the sizes of individual database records of the database as a whole, on the relative
speeds of the get_next_record, compare, and process functions, and so on.

It can be as important to make sure that there are enough tasks in tuple space as
to ensure that there aren’t too many. When there aren’t enough tasks to keep all
the workers busy, then work starvation sets in, and performance diminishes.
Thus, if LOWER_BOUND were too low, there might be periods where workers
would actually have to wait for their next task, a condition which is virtually
never desirable.

Load balancing is another consideration that often comes into play. This
program will perform fine if all of the comparisons take about the same amount
of time, as would be the case when comparing fingerprints. However, there are
many cases where different comparison operations take vastly different amounts
of time—comparing DNA sequences, for example. In such cases, the program
must ensure that the more time consuming comparisons do not become the rate
limiting steps in the entire job. For example if the comparison which took the
longest was started last, the other workers would all finish and sit idle waiting for
it.

Sometimes, such problems can be avoided by paying attention to the order in
which records are obtained, for example, by making get_next_rec more
sensitive to task size in our example. This can complicate get_next_rec a
great deal, to the point where it too would benefit from becoming a parallel
operation. Of course, the same kinds of considerations hold for the routine
process as well.

At other times, it is the comparison itself that needs to be parallelized. It may not
be sufficient to perform several comparisons at once when an individual
comparison takes a very long time.

In either of these cases, it will not be possible to take the generic approach to
database searching that we have here. Rather, the specifics of the comparison or
record retrieval or results processing algorithms will have to be examined
explicitly, and creating a parallel version of one or more of them will be
necessary to achieve good performance. In Chapter 7 of their book, Carriero and
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Gelernter present an elegant combination database searching program which
parcels out small comparisons as a whole and divides large ones into discrete
pieces.

Molecular Dynamics
Molecular dynamics calculations are performed to simulate the motion within
molecules over time. This method is used to study the very large molecules of
commercial and biological interest, typically containing thousands of atoms. The
atoms in these molecules are constantly in motion; this movement results in
changes in the overall molecular structure, which can in turn affect the
molecule’s properties. A molecular dynamics simulation calculates the changing
structure of a molecule over time in an effort to understand and predict its
properties. These calculations are carried out iteratively, solving for the total
molecular energy and the forces on and positions of each atom in the molecule
for each time step. In general, an atom’s position depends on the positions of
every other atom in the molecule, making molecular dynamics calculations
require significant computational resources. 

This case study illustrates the following techniques:

➠ Per-iteration worker wakeup.
➠ Cleaning up tuple space.
➠ Distributed master functions.

Since the original program for this case study is very long, we’ll only look at the
central portions as we examine how it was parallelized with C-Linda. This
program required changes to several key routines, and illustrates using C-Linda
to parallelize the calculation setup work as well as the computation core. 

The diagram in Figure 3 presents a schematic representation of the sequential
version of the computation:

After performing some initial setup steps in which it reads in and stores the data
for the calculation and calculates the sums of special charges and some other
quantities for the molecule, the program enters its main loop. For each time
step—one loop iteration—the program must calculate the bonded and
nonbonded interactions among all of the atoms in the molecule. The bonded
interactions occur between atoms that are directly connected together by a
chemical bond, and the nonbonded interactions are the effects of atoms that are
not bonded upon one another’s position. The latter take up the bulk of the time
in any molecular dynamics calculations because they are both more numerous
and more complex than the bonded interactions. 
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Here is a simplified version of the original main routine:

main(argc,argv)
{
T = 300.0. 
process_args(argc,argv);
Read data.
Initialize parameters & data structures.

verl_init(str,coor,vel,s);
Te = temperature(str,kinetic_energy(str,vel));
verl_scale(coor,sqrt(T/Te));

for (i=0; i < NSteps; i++) {
verl_step(str,coor,vel,s);
Te = temperature(str,kinetic_energy(str,vel));
verl_scale(coor,sqrt(T/Te)); 
} 

exit(0);
}

For this molecule, the oxygen atom’s only
bonded interaction is with the carbon atom
it is connected to. A molecular dynamics
calculation will also compute the effects of
its nonbonded interactions with every other
atom in the molecule. 

Figure 3. Sequential Version of the Molec. Dyn. Program & Bonded vs. Nonbonded Interactions
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The key routines here are verl_init, which performs the setup work, and
verl_step, which oversees the calculation at each time step. The actual
computations are performed by routines called from these functions. As we’ll see,
it is in the latter that the major changes for the C-Linda version appear. 

Figure 4 illustrates the structure of the parallel version of the molecular
dynamics program. The master still does much of the initial setup work, but one
step, summing the special charges, is divided among the workers. Once the
master has gathered and processed the workers’ results from the setup phase, the
main calculation loop begins. Some parts of it remain with the master; in fact,
the nonbonded interactions so dominate the execution time that it is not worth
parallelizing any of the other steps.
 

For each loop iteration, the master calculates the bonded interactions and other
energy terms, and then divides the work of the nonbonded interactions among
the workers, placing the data the worker will need into tuple space. Eventually,
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the master gathers the workers’ results, using them along with the quantities it
computed itself to calculate the new position and velocity for each atom in the
molecule. 

Here is real_main, which is a renamed version of the original main:

real_main(argc,argv)
{
T= 300.0. 
process_args(argc,argv);

/* startup workers */
for (i = 0; i < num_workers; i++)

eval("worker", nb_energy_worker(i), num_workers));

Read data.
Initialize parameters & data structures.

verl_init(str,coor,vel,s);
Te = temperature(str,kinetic_energy(str,vel));
verl_scale(coor,sqrt(T/Te));
for (i=0; i < NSteps; i++) {

verl_step(str,coor,vel,s);
Te = temperature(str,kinetic_energy(str,vel));
verl_scale(coor,sqrt(T/Te)); 
} 

/* kill workers & clean tuple space */
for (i = 0; i < num_workers; i++){

out("wakeup", -1, i);
in("worker", ?int);
}

lexit(0);   /* use C-Linda exit function */
}

The only changes here are the two loops which create and terminate the worker
processes. The first for loop consists of num_workers eval operations. Each
worker is passed a unique integer as its argument, its worker ID number, so to
speak. It will use this value to retrieve its own task from tuple space. 

The final for loop creates one “wakeup” task per worker, with its second field set
to -1. This is a poison pill, telling the worker to exit. The loop also retrieves the
passive data tuple the worker emits as it dies before generating the next poison
pill. This ensures that the master process will not terminate until all the workers
have.
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If the speed of the shutdown process were important, then the in operations
could be placed in their own loop, so that all of the poison pills would be
generated essentially at once. Then, the workers die in parallel, with the master
collecting the “worker” data tuples only after generating all of the poison pills.

In this program, there is no master routine per se; rather, the master functions
are split among three routines: 

➠ real_main, which creates and terminates the workers.

➠ nb_setup_energy, which places global (i.e., non-iteration specific) data 
into tuple space and controls the parallel special charges calculation.

➠ nb_energy, which controls the nonbonded interaction energy 
calculation for each iteration.

Here is nb_energy_setup:

void nb_energy_setup(str,coor,count)
Perform sequential setup work.

/* global data all workers get once */
out("A", (str->A):, "B", (str->B):, 
    "pack_atc", packatomtc:str->n+1);

/* taskav = total work/# workers = target pairs per worker */
taskav = (nb_num) * (nb_num-1) / 2 / num_workers;

/* create worker tasks: 
*    start = beginning of worker’s domain
*    outsize = size of worker’s section */
for (index=1,workerid=0; workerid < num_workers; workerid++){
 start = index;

/* compute start & length for this worker. tasksum holds the
* number of pairs given to this worker so far. increment it
* with each successive value of index (= size of current 
* matrix row) until task >= target or we’re out of pairs. */
for (tasksum=0; tasksum <= taskav && index < nb_num+1; index++)

tasksum += index;

if (workerid == num_workers - 1) /* last worker */
outsize = nb_num + 1 - start;

else
outsize = index - start;

/* start workers’ initialization phase */
out("nbwconfig",workerid,start,outsize,nb_num,expfac,confac);
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Fill worker-specific data arrays and send to tuple space.
} /* end worker init loop */

/* get partial q-sums and nb_list size calculated by workers*/
qasum = qbsum = 0.0;
for (i=0 ; i < num_workers; i++){

in("qsum", ?uasum, ?ubsum, ?ucount);
qasum += uasum;
qbsum += ubsum;
*count += ucount;
}

Finish initialization.
return;
}

After performing the same initial setup steps as the sequential version, the
parallel version of nb_energy_setup places some global data in tuple space.

The majority of the code shown in this routine is concerned with dividing the
work up among the worker processes. The tasks created here define the range of
the data each worker is responsible for. This represents a somewhat different
technique from the usual master/worker scenario. In the latter, the work is
divided into tasks which are independent of any particular worker, and each
worker grabs a task when it needs one. Here, the total work is divided among the
workers at the beginning of the calculation; the work each worker does is
essentially part of its structure—in this case, a function of its worker ID number.
This technique of dividing the problem space into discrete chunks and assigning
each to one worker is known as domain decomposition. The parameters
calculated here and communicated to each worker via tuple space will be used in
both the summing of special charges done in the setup phase (with results
collected at the end of this routine), and in the actual nonbonded interactions
computation later in the program.

The scheme for dividing the work here is somewhat complex, but it is designed to
ensure good load balancing among the worker processes—this is always a
concern when a domain decomposition approach is taken.

For a molecular dynamics calculation, the total number of nonbonded
interactions for an N-atom molecule is approximately N*(N-1)/2, and so we want
each worker to do about

(N*(N-1)/2) / num_workers

of them. If there are N atoms, there are N2 possible interactions, but we throw
out pairs where an atom is interacting with itself. The factor of 1/2 comes from
the fact that the interactions are symmetric (A’s effect on B is equivalent to B’s
effect on A) and thus only need to be computed once. We should also remove
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bonded pairs, but if this number is small compared to the total number of
interactions, then our formula is a reasonable approximation to the ideal number
of interactions per worker. 

In some cases, the total work can just be divided as evenly as possible among the
workers. Here, we might like to just give each worker the number of interactions
we computed above, correcting the last worker’s amount for any remainder and
other integer rounding we had to do. However, the interaction pairs are actually
stored as rows in a lower triangular matrix (a matrix with all of its non-zero
elements on or below the diagonal), and for maximal efficiency, we want to give
only complete rows of the matrix to each worker. Given this constraint, it is
necessary to figure out how many rows to give each worker so that the number of
elements each one gets comes out about the same (and close to the target
number). 

To do so, the program uses the fact that there are I non-zero elements in row I of
a lower triangular matrix, and assigns consecutive rows to each successive
workers until the number of elements it has exceeds the target number, or until
all the rows are gone. This simple heuristic works quite well so long as the
number of workers is much, much smaller than the number of atoms, a
condition invariably satisfied by real world molecular dynamics problems.

Once the starting position (in the variable start) and the length (outsize)
have been computed, the “nbwconfig” tuple is sent to tuple space; its second
field is workerid, the worker’s ID number assigned at startup. The tuple’s final
three arguments are the total number of atom pairs and two constants.

The final for loop in the routine gathers the results of the special charges
calculations performed in parallel by the workers. The partial results, from the
“qsum” tuple, are summed up by nb_energy_setup and used in the remaining
(sequential) initialization activities, after which the routine returns. 

Before continuing with the main thread of the computation, let’s look briefly at
the beginning of the worker function, nb_energy_worker:

/* in the configuration for each worker */
in("nbwconfig",workerid,?start,?outsize,

?nb_n,?expfac,?confac);
if (workerid != num_workers-1) {

rd("A", ?A:, "B", ?B:, "pack_atc", ?a:len);
out("done_reading");
} else {
for (rdct = 1; rdct < num_workers; rdct++)

in("done_reading");
in("A", ?A:, "B", ?B:, "pack_atc", ?a:len);
} 
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These statements retrieve the “nbwconfig” task tuple and the global values tuple
from tuple space. After it starts up, the worker will block until the “nbwconfig”
tuple is available. The appearance of this tuple is a trigger that initiates active
computation. It is in this sense that we refer to it as a wakeup for the worker,
causing it to resume active execution after a significant pause (“sleep”).

The if statement checks whether this is the worker with the highest worker ID. If
not, it rds the globals tuple, and then creates a “done_reading” tuple. If it is the
last worker, then it ins all the “done_reading” tuples from the other workers and
then ins the globals tuple, removing it from tuple space. This technique is useful
when you want to remove large, unneeded sets of data from tuple space or when
some data must be removed because new or updated versions will replace it.
We’ll see an example of the latter later in the program. 

The worker next computes its portion of the special charges sum, and dispatches
the results with an out operation. It then enters its main infinite while loop,
performing a few data initialization operations for the coming nonbonded
interaction calculation, and then waiting for its next wakeup tuple, again tied to
its worker ID and appropriately labelled “wakeup”:

qasum = qbsum = 0;
Calculate new values.
out("qsum", qasum, qbsum, count);

while(1){
evdw = elec = esup = 0.0;
count = 0;
for(i=0; i <nb_n+1; i++){

force_update_i = &(force_update[i]); 
force_update_i->x = 0.0;
force_update_i->y = 0.0;
force_update_i->z = 0.0;
}

in("wakeup", ?wakeflag, workerid);
}

Keep in mind that this code executes at the same time as the master routine for
this part of the calculation nb_energy_setup, which itself waits for the
workers to place their partial sums into tuple space.

If we return our focus to the master program thread, once the initialization phase
is complete, real_main enters its main loop. The routine verl_step begins
each iteration; eventually, control passes to the routine nb_energy. The
sequential version of this routine computes the nonbonded interactions; the
parallel version of nb_energy performs the master functions for this part of the
calculation.

nb_energy begins by initializing some variables and then sending out the
“wakeup” tuple for each worker along with the current coordinates of the atoms
in the molecule:
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void nb_energy(str,coor,force,evdw,elec,esup)
{
*elec = *evdw = *esup = count = 0.0;

/*wake up workers */
for (workerid = 0; workerid < num_workers; workerid++)

out("wakeup", workerid, workerid);

/*send out current coordinates on each round */
out("coor", coor->c:str->n + 1);

The worker, who has been waiting to receive the “wakeup” tuple, retrieves it and
checks the value in its second field. If this value is not -1, then the next time step
commences. The worker next obtains the current coordinates of the atoms:

in("wakeup", ?wakeflag, workerid);
if(wakeflag == -1) return 0;/* eat poison and die */ 
if(workerid !=num_workers-1){

rd("coor", ?c:len);
out("read_coords");
} else {
for (rdct = 1; rdct < num_workers; rdct++) 

in("read_coords");
in("coor", ?c:len);
}

Most workers rd this tuple; however, the last worker waits until all the other
workers have rd it (using the same technique of gathering semaphore tuples we
saw earlier) before removing it from tuple space with the in operation. In
addition to freeing the memory, this is necessary so that the new coordinates can
be unambiguously transmitted to tuple space on the next iteration. 

The worker then calculates the nonbonded interactions for its pairs of atoms. It
uses code differing only in its loop limits from that in the sequential version of
nb_energy:

for (i=0, gi=start ; i < outsize; i++, gi++) {
do many computations …
}

The initial value of the variable gi and the limit against which the variable i is
tested were both obtained from the “nbwconfig” tuple. Once this calculation is
complete, the worker sends its results to tuple space:

out("workerdone", fu:start+outsize, elec, evdw, esup, count);
It then waits for the next wakeup tuple commencing the next iteration of its
while loop; eventually, it retrieves a poison pill and exits.
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nb_energy ultimately gathers the “workerdone” tuples and merges their results
into the arrays used by the remainder of the (unaltered sequential) program. The
calculation then continues as in the sequential version, with the final calculated
energies corrected for temperature at the end of each iteration.

Once all time steps have been competed, real_main kills the workers and
cleans up tuple space, finishing the master functions it started when the program
began. As we have seen, master responsibilities are distributed among three
separate routines in this program, each controlling a different phase of the
calculation. 
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Quick Start
4
Using Linda on a Network

This chapter describes the special considerations involved when executing Linda
programs on a network of UNIX workstations.† The network version of Linda is
often referred to as Network Linda, and we will use that terminology here as well.
In addition to the discussion here, issues related to Network Linda are also
covered in the section “Tuple Matching in an Heterogeneous Environment” in
Chapter 2 and the section “Debugging Network Linda Programs” in Chapter 5.

† Network Linda is also available for certain distributed memory parallel computers. 
However, the discussion here centers on networks, although identical considerations 
apply in both cases. This discussion applies only to Network Linda version 2.4.7 or 
higher.

Quick Start
Running parallel programs on networks is complicated by issues such as process
scheduling, executable location, heterogeneity, and the like. ntsnet is a powerful,
flexible utility for executing Linda programs on a network, designed to help you
manage this complexity. This section discusses the simplest possible case, and is
designed to enable you to get started running programs right away. The
remainder of the chapter covers more complex scenarios and the ntsnet features
provided to handle them.

Normally, Network Linda runs the real_main process on the local system, and
evaled worker processes run on remote hosts. This requires that it is possible to
successfully execute an rsh‡ command from the local host to each remote host
without being required to enter a password. Consult the man page for rsh or your
system administrator if this condition does not hold true for your site.

In the simplest case, the current working directory is a commonly mounted
directory, accessible by the same pathname from every host that you want to use
(it can be a permanent mount point or be auto-mounted). 

Given these assumptions, the following steps are necessary to create and  run a
Network Linda program:

➠ Make sure that the bin subdirectory of the Linda distribution tree is in 
the search path (usually, this location is /usr/licensed/linda/bin).

‡ remsh under HP/UX.
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➠ Define the set of hosts to be used for program execution by creating the 
file .tsnet.config in your home directory, containing a single line like 
this one:

Tsnet.Appl.nodelist: moliere sappho blake shelley

Replace the sample node names with the appropriate ones for your 
network.

➠ Compile the program, using a command like the following:

$ clc -o hello_world hello_world.cl

See the “Quick Start” section of Chapter 2 for a more detailed discussion 
of this and the following step.

➠ Finally, run the program, preceding the normal invocation command and 
arguments with ntsnet:

$ ntsnet hello_world 4

ntsnet will automatically run the program on the defined set of nodes.

What ntsnet Does
ntsnet is responsible for the following tasks:

➠ Parsing the command line options and configuration file entries.
➠ Querying remote systems for load averages.
➠ Locating local executable files.
➠ Determining what set of nodes to run on, based on its scheduling 

algorithm.
➠ Determining working directories and executable file locations on remote 

nodes, using map translation and the associated configuration files (if 
necessary).

➠ Copying executable files to remote nodes (if necessary).
➠ Initiating remote processes, via rsh.
➠ Waiting for normal or abnormal termination conditions during program 

execution.
➠ Shutting down all remote processes at program termination.
➠ Removing executables from remote systems (if appropriate).

The remainder of this chapter will look at these activities—and the ways that the
user can affect how ntsnet performs them—in considerable detail.
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Using the ntsnet Command
The general syntax for the ntsnet command is:

ntsnet [options] executable [arguments]
where options are ntsnet’s options, executable is the executable file to run on
the local system, and arguments are command line arguments for the specified
network program. ntsnet uses the command line options, the location of the
local executable, and the settings in its configuration files to determine all of the
remaining information it needs to execute the network parallel program. 

Customizing Network Execution
Network Linda provides the ntsnet command to execute parallel programs
across networks of UNIX workstations. ntsnet is designed for maximum
flexibility. Proper configuration makes running a Network Linda program as
simple as prepending its executable’s pathname—and any arguments—with the
ntsnet command, as in the previous example.

ntsnet can draw its configuration information from a variety of sources. These
sources are, in order of precedence:

➠ command line options
➠ ntsnet’s application-specific configuration file (if any)
➠ ntsnet’s local configuration file
➠ ntsnet’s global (system-wide) configuration file
➠ ntsnet’s built-in default values

When they do not conflict, the settings from all of these sources are merged
together to create the ntsnet execution environment.

We’ll cover each of these items separately, in the context of actual execution
tasks. See Chapter 6 for a complete reference to all command line options and
configuration file resources and formats. 

ntsnet 
Configuration 
Files

ntsnet uses several configuration files: the global, local, and application-specific
configuration files—we’ll use this term to refer to the specific files rather than in
a generic sense from this point on—which define program execution
characteristics, and the local and global map translation files, which define
directory equivalences on the various potential execution nodes in the network.

ntsnet first looks for an application-specific configuration file, named
tsnet.config-application_name, where application_name is the name of the
application being executed within ntsnet (application names will be discussed
shortly).  ntsnet looks for an application-specific configuration file in the
following way: first, if the executable on the command line contained a full or
partial directory specification, that location is searched for this configuration file.
If only an executable filename was given, then the directories in the
TSNET_PATH environment variable are searched in turn.
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The optional local configuration file and map translation file are named
.tsnet.config and .tsnet.map respectively. If used, these must be located in
the user’s home directory. The global files—tsnet.config and tsnet.map—
are located in the common/lib subdirectory of the Linda tree: for example, in /
usr/local/sca/common/lib if the Linda tree begins at /usr/local/sca.
Settings in the local files always take precedence over those in the global files,
and settings in the application-specific file take precedence over the local file.
The global files may also be ignored entirely if desired. Note that precedence
operates on a setting-by-setting basis, and not by an entire file. 

The ntsnet configuration files contain entries which specify various execution
parameters and desired characteristics. Depending on the parameter to which
they apply, entries can vary significantly in their ultimate scope; they can affect:

➠ The execution of any Network Linda program;
➠ The execution of a specific program on every node it uses;
➠ The execution of any program on a specific node; or
➠ The execution of a specific program only on a specific node. 

The configuration file syntax is modeled after the Xlib resources of the X Window
System. However,  ntsnet and Network Linda are neither part of X nor do they
require it. Some users may find a general introduction to X resources helpful; see
the Bibliography for the appropriate references.

A resource is basically just an execution parameter (characteristic). The
configuration file defines values for the various available resources and specifies
the contexts—application programs and/or execution nodes—for which the value
applies. 

The ntsnet configuration files consist of lines of the following form:

program[.application][.node].resource: value

where program is the system program name to which the resource being defined
is applied, application is the relevant user application program, node is the
relevant node name, resource is the resource/characteristic name, and value is
the value to be set for this resource in this context. We’ll look at each of these
parts in turn.

To begin with, the system program for the ntsnet configuration file entries will
always refer to Network Linda. We’ll look at the exact syntax of this component
in a moment. At this point in time, this component is simply a carryover from
the X syntax.

A resource can be either application-specific, node-specific, or apply to both
applications and nodes. For example, the resource rworkdir, which specifies the
working directory on a remote node, is application and node specific, meaning
that a different value can be set for it for every application program and node
combination. For example, you can specify a different working directory when
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running program bigjob on node moliere and on node chaucer, and you can
specify different working directories for programs bigjob and medjob on node
moliere. 

In contrast, the resource speedfactor is node-specific, meaning that you can
specify a different value for each potential execution node, but not for
node-application program combinations; the value for a node applies to all
Network Linda applications that run on it. Such resources usually specify
intrinsic characteristics of a node which don’t depend on the application
program being run. For example, speedfactor specifies how fast a node is
relative to other nodes in the network, something which is relatively constant
across different applications (at least in theory). 

Finally, the resource maxprocspernode is an application-specific resource,
meaning that its value can be specified separately for different application
programs. The value set for an individual application is used for whatever nodes
it may execute on. This resource specifies the maximum number of processes
per node that can be run for a given application program (the default is 1). 

Here are some example entries:

! some sample .tsnet.config file entries
ntsnet.hello_world.moliere.rworkdir: /tmp
ntsnet.hello_world.maxprocspernode: 1
ntsnet.moliere.speedfactor: 2

Lines beginning with an exclamation point (!) are comments. The second line
sets the working directory to /tmp on the node moliere when the application
hello_world is run there. The third line sets the maximum number of
processes that can run on any one node when the application hello_world is
executing to 1, and the final line sets the speed factor for the node moliere to 2—
where the default value is 1—indicating that it’s about twice as fast as the norm.

In configuration file entries, the program, application and node components (if
used) can be either the class name or a specific instance of a class. Class
names—recognizable by their initial capital letter—act as wildcards, stating that
the entry applies to all instances of the specified class. In this way, they can serve
as default values for specific instances—specific applications and/or nodes—for
which no explicit entries have been created. The following table lists the possible
values for each of these three components of a configuration file entry:

Item Associated Class Name Example Instance
program Tsnet ntsnet
application Appl user application program name
node Node node name, user-defined node resource 

Currently, ntsnet is the only valid specific instance of the class Tsnet, so the
two are effectively equivalent. Thus, for every entry, the program component will
be either the class Tsnet or its only specific instance, ntsnet. 
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Application names are usually the name of the corresponding executable
program. In order to make the separations between components possible,
however, periods in application names must be translated to underscores. Thus,
the application big.job would appear in configuration file entries as big_job.
Application names can also be user defined if desired, and the application name
to use for a given run can be specified on the command line with ntsnet’s -appl
option. For example:

$ ntsnet -appl big_job medium.job

This option can be used either to apply one application’s settings to a different
application program or to specify the use of a user-defined application name
(which need not correspond to the name of any executable program). Note that
periods in executable names are translated to underscores only when used as
application names in the configuration files; such translation should not take
place at any other time, such as when they are invoked in the ntsnet command
line. 

Node names may be full node names, such as moliere.frachem.com, or node
nicknames: moliere. In the node component of configuration file entries only,
periods again have to be translated to underscores (so that ntsnet can figure out
where the component boundaries are). Anywhere else in the configuration file—
as part of resource values, for example—and on the command line, no such
translation is used.

Configuration file resources are keywords whose values specify some kind of
execution behavior option or application or node characteristic. Consider these
examples:

Tsnet.Appl.Node.rworkdir: /tmp
Tsnet.Appl.maxprocspernode: 4
Tsnet.Node.speedfactor: 1

These three entries all refer to application and node classes only, thereby serving
as default values for instances not specifically defined in other entries. The first
line sets the default working directory for remote nodes to /tmp on each node.
The second line sets the maximum number of processes per node to 4, and the
final line sets the default node speed factor to 1. These entries are completely
general, applying to every application program and/or node. Contrast them to the
earlier example, which applied only to the explicitly named applications and
nodes.

One can also freely intermix classes and specific instances, as in these examples:

Tsnet.hello_world.Node.rworkdir: /tmp/hello
Tsnet.Appl.moliere.rworkdir: /xtmp
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The first example sets the default working directory to /tmp/hello for any
remote node when the program hello_world is run. The second example sets
the default working directory on node moliere to /xtmp whenever a network
application without its own entry for this resource runs remotely on it. 

Many resources have corresponding ntsnet command line options. These
options are designed to be used to override configuration file settings for a
specific program run (although they can be used instead of the configuration files
if desired). Here is an example command which runs hello_world, overriding
its usual maxprocspernode resource setting:

$ ntsnet -maxprocspernode 3 hello_world …

Command line options override any configuration file settings. Remember also
that local configuration file settings take precedence over those in the global
(system-wide) configuration file. 

Resource Types
In addition to their scope—node-specific, application-specific, or node and
application specific—resources can also be classified by the kind of value they
expect.

Some resources, like those we’ve looked at so far, require a value: an integer or a
directory, for example. Many others are Booleans, and expect a true or false
setting for their value. For such resources, the following values are all interpreted
as true: true, yes, on, 1. These values are all interpreted as false: false, no, off, 0.
For example, the following entry indicates that the node marlowe is not
currently available:

Tsnet.marlowe.available: no

ntsnet command line options corresponding to resources taking Boolean values
use the following syntax convention. If the option name is preceded by a minus
sign, then the resource is set to true, and if it is preceded by a plus sign, the
resource is set to false. For example, the command line option -useglobalconfig
sets the resource useglobalconfig to true, stating that the global ntsnet
configuration file should be consulted. The option +useglobalconfig sets the
resource to false, and the global configuration file will be ignored. The polarities
of the plus and minus signs may seem counterintuitive at times; just remember
that minus means on (the usual  convention used by most X applications). 

Note that all options which require parameters—for example, the command line
option -maxprocspernode option we looked at earlier—are preceded by a
hyphen (a prepended plus sign has no meaning for them and will generate an
error). Their values follow them, separated by a space. 
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Not all resources have named command line options. The -opt option is provided
so that any resource’s value may be specified from the command line. It takes a
valid configuration file entry as its parameter, enclosed in double quotation
marks:

$ ntsnet -opt "Tsnet.moliere.available: no" hello_world …

A third type of resource enables users to create named node lists. Here are some
examples:

Tsnet.Appl.sparcs: moliere gaughin voltaire pascal
Tsnet.Appl.rs6k: chaucer marlowe blake joyce
Tsnet.Appl.chem: @sparcs @rs6k priestley dalton

Each of these lines defines a name for a list of nodes. The first line defines a list of
nodes to be associated with the name sparcs, for example. When a list name is
used as a component in another list, its name is preceded by an at sign (to
indicate resource indirection), as in the third line above. Up to 16 levels of
indirection are allowed. 

We’ve now introduced all the pieces of the ntsnet configuration file. The
following sections will introduce many of the specific resources in the context of
Network Linda execution scenarios. 

Determining Which Nodes a Program Will Run On
Two resources control what nodes a given application will run on. First, the
nodelist resource, which takes a list of nodes as its value, specifies a node list for
a given application. Here are some examples:

Tsnet.Appl.nodelist: @chem gauss newton descartes
Tsnet.hello_world.nodelist: gauss moliere dalton avogadro

The first line specifies the default set of execution nodes for Network Linda
programs (in addition to the local node). The second line specifies a different set
for the application hello_world (which overrides the default value set in the
first line).

Duplicates are automatically removed from node lists. Variant name forms for
the same node—the full name and the nickname, for example—are also
discarded (the first one is kept). In such cases, a warning message is printed. 

The nodelist resource can also take the special value @nodefile. This indicates
that the contents of the file specified in the nodefile resource contains the list of
nodes to be used (one name per line). If nodefile has not been given a value,
then the file tsnet.nodes in the current directory is used. The value for
nodelist defaults to @nodefile, so ignoring both of these resources will result
in the same behavior as under previous releases of Network Linda (which used
the tsnet command), providing  backward compatibility if you do nothing. 
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The -nodelist and -nodefile command line options correspond to the nodelist
and nodefile resources respectively. The value for -nodelist must be enclosed in
double quotation marks if multiple nodes are listed:

$ ntsnet -nodelist "moliere leopardi sappho" hello_world 4

Specifying 
Execution Priority

Two resources control the execution priority of processes started by ntsnet. The
high resource (application-specific) indicates whether processes are nice’d or
not (it defaults to true). If high is set to false, then processes are run at lowered
priority and Linda internodal communication is throttled so that it does not flood
the network (which would degrade performance for all network users). Setting
high to true is not recommended for heavily loaded networks. The command line
options -high/+high (abbreviable to -h and +h) correspond to this resource. 

The nice resource (node and application specific) allows you to specify whether
processes should be nice’d or not on a node-by-node basis for each application.
For example, the following lines state that processes running hello_world on
moliere should be nice’d but those on chaucer shouldn’t be (although generally
processes that run on chaucer are nice’d):

Tsnet.hello_world.moliere.nice: true
Tsnet.hello_world.chaucer.nice: false
Tsnet.Appl.chaucer.nice: true

The default value for the nice resource is true. If the value of the high resource is
set to true, then it overrides the setting of the nice resource.

How ntsnet Finds Executables
ntsnet locates the local executable—the executable file that will run on the local
node (which is the node where the ntsnet command is executed)—in the
following manner. If a full pathname is specified on the command line, that path
specifies the exact location of the local executable. For example, the following
command executes the network program hello_world in /tmp:

$ ntsnet /tmp/hello_world …

If only an executable name is specified, then ntsnet uses the TSNET_PATH
environment variable to locate the executable file. The environment variable’s
value should be a colon separated list of directories, which are searched in order
for required executables (working just like the UNIX PATH variable). If
TSNET_PATH is unset, it defaults to:

/usr/bin/linda:.

meaning that first the directory /usr/bin/linda is searched, followed by the
current directory. 
Linda User’s Guide & Reference Manual 4–9



Chapter 4: Using Linda on a Network
The location of the local executable can play a large part in determining the
locations of the executable files to be run on remote nodes using ntsnet’s map
translation feature (described below). These remote directory locations are also
explicitly specifiable using the rexecdir resource (application and node specific).
Here is an example:

Tsnet.Appl.Node.rexecdir: /usr/local/bin
Tsnet.Appl.moliere.rexecdir: /usr/linda/bin
Tsnet.hello_world.Node.rexecdir: /usr/bin
Tsnet.hello_world.moliere.rexecdir: /usr/linda/bin/test

The first line sets the default location for remote executables to /usr/local/
bin on the remote system, meaning that ntsnet should look in this directory on
each node by default when trying to find the executable file to startup.
Subsequent lines set different default values for the application hello_world
and for the node moliere. The final line sets a specific value for the application
hello_world when running remotely on moliere: the executable for
hello_world on moliere resides in the directory /usr/linda/bin/test. 

The rexecdir resource can also be given the special value parallel (which is its
default value). This indicates that map translation is to be performed on the
directory where the local executable resides, for every node which has no
specific remote execution directory set. Map translation involves taking the
name of the local directory containing the executable to be run and determining
what the equivalent directory is for each remote node participating in the job.
These equivalent directories are determined according to the rules set up by the
user in the local and/or global map translation files. The format of these files is
discussed in the next section. 

The -p command line option specifies the values for both rexecdir and rworkdir,
overriding all other methods of specifying them (-p is discussed later in this
chapter).

About Map 
Translation

As we’ve stated, map translation is a way of defining equivalences between local
directory trees and directory trees on remote nodes. If your network presents a
consistent view of a common file system (via NFS or AFS, for example), then you
will not need to worry about map translation. On the other hand, if your
networked file systems are not completely consistent—if a file system is
mounted as /home on one system and as /net/home on another system, for
example—then map files can be a great help in automating Network Linda
execution.

Basically, map files provide a  way of saying, “When I run a program from
directory X on the local node, always use directory Y on remote node R.” Map
translation occurs  for both the execution directories (locations of executable
files) and working directories on each node.
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Map translation means that ntsnet translates local directories to their properly
defined equivalents on a remote node before attempting to locate an executable
on (or copy an executable to)  that remote node (executable file distribution is
discussed later in this chapter). If map translation is enabled—as it is by
default—but no translation is explicitly specified for a given directory and/or
node (whether because its rules haven’t been specified or no map translation file
exists), the rule is simple: look for the same directory on the remote node. 

If enabled, map translation occurs whether the local directories are specified
explicitly (as when the full executable file pathname is given on the command
line) or determined implicitly (using the TSNET_PATH for example). Thus, map
translation will occur for both of the following commands:

$ ntsnet /tmp/test24
$ ntsnet test24

In the first case, ntsnet will translate the directory  you’ve specified, /tmp,  for
each node where the application test24 will run; if no explicit translation has
been defined, then ntsnet will perform a null translation and look for the
program test24 in /tmp on each remote node as well.

For the second command, ntsnet will first determine the location of the test24
executable on the local node, using TSNET_PATH (or its default value), and then
translate that location for each remote node involved in the job. 

If the rworkdir resource is set to parallel (the default value), then the current
working directory is also subject to map translation.

The Map 
Translation File

ntsnet uses the local and global map translation files, ~/.tsnet.map and lib/
tsnet.map (relative to the Linda tree), respectively, to determine the
correspondences between directories on different nodes. The first matching
entry is used to perform each translation. The map translation mechanism is
extremely powerful and can be used to define equivalences among systems,
whether or not their file systems are linked with NFS. 

Map translation is a two-step process. Rather than having to specify the exact
translation for every pair of hosts within a network, map translation allows you
to specify two rules for each host, to and from a generic value, known as a
generic directory. A generic directory is a string—often a directory pathname—
used essentially as a key into the various entries in the map translation file. The
generic directory serves as the target for specific local and remote directories as
ntsnet attempts to translate them for use on various nodes.

Map translation file entries use the following commands:

mapto Map a specific local directory to a generic  directory.

mapfrom Map a generic directory to a specific directory
(usually on a remote node).
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map Equivalent to a mapto and a mapfrom, mapping
specific directories to and from a generic directory.

Here is the general syntax for a map translation file entry:

mapverb generic-dir {
node-name : specific-dir;
node-name : specific-dir;
...
}

The generic directory is always translated to a specific directory before being
used as a location for executables or as the working directory on any node. Thus,
there is no requirement that it even exist as a real directory path. In fact, it is
possible to use any arbitrary symbolic name as a generic directory.

These concepts will become clear once we look at several examples of map
translation. We’ll use the network illustrated in Figure 5, which shows the
location of users’ home directories for each node in the network, for our initial
examples. On aurora, users’ home directories are located in /home, the mount
point for one of its local disks. This same disk is normally statically mounted via
NFS to three other systems: blake, chaucer, and flaubert. On blake, it is also
mounted at /home; on the other two systems, it is mounted at a different
directory location (at /u on chaucer, and at /u/home on flaubert). Home
directories on erasmus are found in the local directory /mf. On the node gogol,
the home directories from aurora are automounted as necessary at /net/
aurora/home. Finally, users don’t generally have their own home directories on
node degas; when they run remote worker processes on this node, they use /tmp
as their working directory (which is what is listed in the diagram).

Consider the following command, run by user chavez from the work
subdirectory of her home directory on flaubert (i.e., /u/home/chavez/work):

aurora
/home

chaucer
/u

blake
/home

erasmus
/mf

degas
/tmp

flaubert
/u/home

gogol/
n

et / aurora / hom
e

autom
ounted

NFS-mounted directory

Figure 5. A Sample Network
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$ ntsnet test24g

For this command to work properly and successfully execute on all of the nodes
in the sample network, we need to construct rules that tell ntsnet how to
translate this working directory for each of the nodes. Most of the work can be
done by this map entry, which uses /home as its generic directory:

map /home {
chaucer : /u;
erasmus : /mf;
flaubert : /u/home;
gogol : /net/aurora/home;
}

This entry translates the listed local directories to the generic directory /home.
The translation applies to the entire tree starting at the specified locations. Thus,
in our example, ntsnet will translate the (local) current working directory on
flaubert, /u/home/chavez/work, to the generic directory /home/chavez/
work (we don’t have to explicitly construct a rule for the current directory).
When it needs to determine the working directory for a remote process
participating in the execution of the application test24g, it will use this generic
directory. So, when it starts a remote worker process on chaucer, it will use the
directory /u/chavez/work as the current directory, translating /home to /u,
as specified in the rule for node chaucer. When ntsnet starts a remote worker
process on blake, it still attempts to translate the generic directory, but no rule
exists for blake. In this case, a null translation occurs, and the directory remains
/home/chavez/work, which is what is appropriate for this system.

The rule we’ve written will allow us to run our ntsnet from the work
subdirectory of chavez’s home directory on nodes aurora and blake, and on any
of the listed nodes except gogol; in each case, the current working directory will
translate to /home/chavez/work, which will in turn be translated to the
appropriate directory when ntsnet starts remote worker processes.

If we want to run the ntsnet command on node gogol, however, we must create
an additional rule. Home directories on gogol are automounted from aurora on
demand. When referred to in the context of a process starting from a remote
system, their location can be written as in the first rule; thus, when a remote
process is initiated on gogol from flaubert, the current working directory for the
remote node is correctly translated to /net/aurora/home/chavez/work.

However, if the ntsnet command is run instead on gogol from this same
directory, the literal directory location—what is returned by pwd or the getcwd
system call—is what is used for map translation, in this case, using the actual
automounter mount point: /tmp_mnt/net/aurora/home/chavez/work.
Thus, the translation from generic to remote directories is handled correctly by
the first rule, and what is needed is a rule for translating this local directory to a
generic directory. This is the function of mapto entries. The following entry
maps the local directory on gogol to the same generic directory we’ve been using:
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mapto /home {
gogol : /tmp_mnt/net/aurora/home;
}

With this rule in place, running ntsnet from gogol will be successful, and the
remote working directories we’ve considered so far will be set appropriately.
Since this is a mapto entry, it will never be used to translate a generic directory
to a working directory on gogol, an appropriate restriction given that
automounted directories should not be explicitly referred to by their temporary
mount points.

The last item we need to consider is translation rules for node degas. This node
is a special case in that users do not have permanent home directories there, and
are accordingly placed in the root directory when they log in. However, the
system administrator feels that it is undesirable for remote processes to run from
the root directory and wants them to run from /tmp instead. So, we need to
equivalence the working directory we’re using to /tmp. Unfortunately, given that
there are no subdirectories under /tmp corresponding to the various users who
might run remote processes on the system, we cannot write one simple rule to
cover everyone. Instead, user chavez would need to include a rule like this one
for her working directory within her local map translation configuration:

mapfrom /home/chavez/work {
degas : /tmp;
}

This particular rule facilitates generic-to-remote directory translation, enabling
remote processes to be started on degas from any other node, using /tmp as the
working directory. Note that the generic directory we’ve specified is the one to
which her home directory will be translated from any other node. This rule will
work only for user chavez; other users would need to construct their own
versions.

mapto mapfrom
flaubert: /u/home/chavez/work

/home/chavez/work

aurora: /home/chavez/work

local remotegeneric

flaubert: /u/home/chavez/work

gogol: /net/aurora/home/chavez/work

blake: /home/chavez/work

chaucer: /u/chavez/work

degas: /tmp

erasmus: /mf/chavez/work

Figure 6. Map 
Translation

The local directory /u/
home/chavez/work 
is translated to the 
generic directory 
/home/chavez/work, 
which in turn is translated 
to the specified remote 
directory for each listed 
remote node; a null trans-
lation occurs for nodes 
aurora and blake (as well 
as for any other node not 
mentioned in the map 
file), leaving the remote 
directory as /home/
chavez/work.
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This rule will not allow chavez to run ntsnet on degas, however, since it uses
mapfrom. If it were necessary to be able to use degas as the local node, then the
rule should be written as a map. Figure 6 illustrates the map translation process
using all three rules for our sample ntsnet command (executed on flaubert).

We’ve noted that generic directories need not exist as real directory locations.
Here is a map file entry which takes advantage of this fact:

map special {
chaucer : /u/guest/linda;
blake : /home/guest1/appl/linda;
sappho : /usr/guests/linda/bin;
aurora : /public/bin;
zola : /usr/local/bin;

}

special is not a real directory on any node. This entry defines the specified
directories on the nodes listed as equivalent. 

Map translation may be disabled by setting the translate resource
(application-specific) to false (it is true by default), or by using the corresponding
command line options (-translate/+translate). Remember also that map
translation is used only for determining executable file locations on nodes for
which the setting of rexecdir is parallel. Similarly, the remote working
directory is determined by map translation of the local (current) working
directory only for nodes where the rworkdir resource is set to parallel (also
its default value). 

Map Translation Entry 
Wildcards

There are two wildcard characters allowed in map translation file entries:

➠ An asterisk (*)  can be used as a wildcard in local and remote node names.

➠ An ampersand (&) can be used to substitute the current node name 
within a translation.

For example, the following mapto entry handles the most common version of
automounted directories:

mapto /net {
* : /tmp_mnt/net;
}

It specifies the same remote directory for every remote node for the generic
directory /net. The asterisk wildcard character can be used as above to
represent the full node name. It can also be used as the initial component of a
node name to specify wildcarded subdomains: *.medusa.com. No other
placement of this wildcard character is supported.
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Here is an example entry using the ampersand wildcard:

mapto /net/& {
sappho : /;
blake : /;
}

These entries map the root directory to /net/hostname for the nodes sappho
and blake. Thus, the local directory /tests/new on sappho would be mapped
to the generic directory /net/sappho/tests/new by this entry.

The ampersand character can also be used within the actual translation
specifications:

map working {
* : /home/test/work/&;
}

This example equivalences the directories /home/test/work/hostname for all
of the nodes within the network.

Here is a more complicated example:

map /net/& {
* : /;
}

This entry maps the local root directory on all nodes to the generic directory /
net/hostname (where hostname is replaced by the name of the local node). It
also translates directories of that form back to their local equivalents when
performing translation on remote directories, preventing unnecessary
automounting.

When wildcarded entries produce multiple matches for a given translation, the
longest matching string is used. When there are two matching strings of equal
length, then the more specific match (i.e., containing fewer wildcards) is chosen.

Distributing 
Executables

If desired, ntsnet can distribute executable files prior to program execution. This
is controlled by setting the distribute resource to true (application-specific).
When different executables are required for the various remote systems (i.e., in
heterogenous networks), all required executable files must be in same directory
as the local executable, and they will be copied to the target remote execution
directories, as determined by the specific values set in the rexecdir resource for
each node or by map translation. The distribute resource is false by default.

The cleanup resource  (application-specific) determines whether remote
executables are removed after the execution completes. Its default value is true.
Note that the local executable is never removed, regardless of the setting of
cleanup. The cleanup resource setting is relevant only when distribute is true. 
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The distribute resource may also be set with the -distribute/+distribute
command line options (both abbreviable to d). The cleanup resource may be set
with the 
-cleanup/+cleanup command line options.

Architecture–
Specific 
Suffixes

By default, the names of executable files on all nodes are the same as the
executable name given on the ntsnet command line. When executables are
distributed prior to execution, this executable is the one that is copied by
default.

However, in heterogeneous network environments—networks in which different
nodes are different kinds of computers, requiring different executables—ntsnet
provides a mechanism for specifying which executable to use based on an
architecture-specific suffix. For example, ntsnet can be told to use executables
having the extension .sparc on some nodes and to use ones with the extension
.rs6k on others.

These suffixes are used when the suffix resource (application-specific) is true
(the default value). Which suffix to use for a given node is specified by the
suffixstring resource (application and node specific). The default suffixstring
value is the null string, so even though suffixes are used by default, this fact has
no effect until some specific suffixes are defined using suffixstring. 

Here is a section of a ntsnet configuration file illustrating a common use of these
features:

Tsnet.Appl.Node.rexecdir: parallel
Tsnet.test24.nodelist: chaucer moliere sappho
Tsnet.test24.suffix: true
Tsnet.Appl.chaucer.suffixstring: .sparc
Tsnet.Appl.moliere.suffixstring: .rs6k
Tsnet.Appl.sappho.suffixstring: .sparc
Tsnet.test24.sappho.suffixstring: .sun4
Tsnet.Appl.aurora.suffixstring: .sgi

These entries would result in the following executables being used for these
nodes when running the application test24 (located in whatever directory
resulted from map translation):

chaucer test24.sparc
moliere test24.rs6k
sappho test24.sun4
aurora (local) test24.sgi

If the distribute resource for the application test24 is true, then files of these
names will be copied to the remote nodes prior to execution. Otherwise, they
must already exist there (in the proper directory). 
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The command line options -suffix/+suffix may also be used to specify the value
of the suffix resource for the current run.

Specifying the 
Working 
Directory for 
Each Node

The working directory used for program execution on a remote node is also
mapped from the current directory on the local node if the rworkdir resource
(application and node specific) is set to parallel for that node. Alternatively,
an explicit working directory may be set for an application, node, or
application-node combination by giving an explicit directory as rworkdir’s value.

The -p option may be used to specify a remote directory for both rexecdir and
rworkdir in a single option. It overrides any other method of setting either
resource, including other command line options. Note that the old tsnet
command requirement of including -p with $cwd as its option is no longer
necessary. If the current directory is NFS mounted on all desired nodes, using
the same path everywhere, then a command like this:

$ ntsnet hello_world ...
will work properly (even assuming no settings have been made via the ntsnet
configuration file). It will run the executable hello_world, located in the
current directory on all relevant nodes (by default, the nodes in the file
tsnet.nodes in the current directory if no other provisions have been made),
using the current directory as the default directory in each case. The -p option is
no longer necessary in such cases.

Permissions and 
Security Issues

ntsnet assumes that all remote systems and directories are accessible. By
default, it uses the local username for running remote processes. The user
resource (node-specific) may be used to specify an alternate username on a
remote system. For example, the following configuration file entry tells ntsnet to
use the username guest when running process on node sappho:

Tsnet.sappho.user: guest
There is no provision for specifying passwords for use on remote systems. The
standard TCP/IP mechanisms—the /etc/hosts.equiv file and individual user
.rhosts files—should be used to assure access. 

Heterogeneous 
Network Features

This section summarizes the resources and other Network Linda features useful
when running in a heterogeneous network environment. Such environments
bring up two major concerns: invoking the proper (architecture-specific)
executable on each node and making sure that the data passed between
processors is intelligible.

The suffixstring resource handles the first concern by enabling you to specify an
architecture-specific suffix to be applied to executable filenames on a node by
node basis.
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Data compatibility centers around three major concerns:

➠ Byte ordering (endianism)
➠ Data type formats, especially floating point
➠ Structure layouts

When one or more of these items differ between architectures, conversion must
occur. The -linda xdr compiler switch invokes XDR conversion, which can
convert simple data types and arrays of simple types. It does not convert
structures (which are viewed as opaque byte arrays). Note that this compiler
option must be used on all executables invoked during a particular run or on none
of them.

ntsnet Worker Process Scheduling
The Network Linda System provides tremendous control over how processes are
scheduled on remote nodes. ntsnet uses the node list resources we’ve already
looked at to determine the list of nodes where the application may potentially
run. Whether a node is actually used depends on a number of other factors,
which we’ll examine in turn. 

Forming The 
Execution Group

The list of potential nodes on which an application may run is determined by the
nodelist resource; the set of nodes on which an application actually runs is
called the execution group. ntsnet begins with the node set and successively
starts remote processes using the scheduling rules described below until a
sufficient number of them are running. 

Technically, the processes started by ntsnet are known as eval servers. An eval
server is a process started by ntsnet that waits to execute a Linda process. The
process on the local node is known as the master in this context, and it too
eventually becomes an eval server. The eval servers on remote nodes (and any
additional eval servers on the local node) are known as workers. Note that this
terminology is independent of the master/worker concepts within the application
program. When used in this chapter, the terms master and worker refer
exclusively to the initiating process on the local node and all other eval servers
started by ntsnet, respectively. 

How many worker processes are desired is controlled by the maxworkers and
minworkers resources (application-specific). The default values are the number
of distinct nodes in the nodelist resource (not counting the local node) for
maxworkers and 1 for minworkers. The master attempts to start maxworkers
workers when execution begins; if at least minworkers eventually  join the
execution group, the job proceeds. Otherwise execution terminates. 
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More specifically, execution will begin according to the following rules:

➠ ntsnet will attempt to start up to maxworkers worker processes. Until 
the time specified by the minwait resource, execution will begin 
immediately whenever maxworkers workers have joined the execution 
group .

➠ When the minwait interval has elapsed, if at least minworkers have 
joined the execution group, execution will start.

➠ Otherwise, ntsnet will continue trying to create workers until the 
maxwait interval has elapsed (which includes the time already spent in 
minwait). As soon as minworkers workers have started, execution will 
immediately commence.

➠ Once maxwait seconds have passed and the execution group is still 
smaller than minworkers, the startup process will fail, and execution will 
not proceed.

The default value for both maxwait and minwait is 30 seconds. The values for
maxwait and minwait may also be specified using the -wait command line
option. Its syntax is:

-wait minwait[:maxwait]

For example, -w 30:60  would set  minwait to 30 seconds and maxwait to a
total of 60 seconds. If -wait is given only a single value as its parameter, then that
value is used for both resources.

Similarly, the values for maxworkers and minworkers may also be specified
using the -n command line option. Its syntax is:

-n minworkers[:maxworkers]

For example, -n 2:4 would set minworkers to 2 and maxworkers to 4. If -n is
given only a single value as its parameter, then that value is used for both
maxworkers and minworkers.

Once ntsnet has attempted to start a process on a node, it waits for a message
from the worker indicating that it has joined the execution group. Only after the
master receives the join message is the worker added to the execution group and
counted toward the minimum and maximum number of workers.

When the master receives the worker’s join message, it transmits a response. If a
worker does not get a response within the number of seconds specified as the
value to the workerwait resource (application-specific), it will exit and not
participate in the application execution. The default value for workerwait is 90
seconds.
4–20 Linda User’s Guide & Reference Manual



ntsnet Worker Process Scheduling
The following table summarizes the preceding information. At a given time t,
having received p join requests, the master process will act as follows:

States & Outcomes p < minworkers minworkers ≤ p < maxworkers p > maxworkers
t < minwait wait wait success
minwait ≤ t ≤ maxwait wait success success
t > maxwait failure success success

Selecting Nodes 
for Workers

Table 1 lists the resources used to determine whether a node is used for a worker
process. When it wants to start a new worker process, ntsnet determines which
node to start it on in the following manner. First, it calculates a new adjusted
load for each node assuming that the process were scheduled to it, using the
following formula:

(initial_load + (Nmaster * masterload) + (Nworker * workerload)) / speedfactor

This quantity represents a load average value corrected for a variety of factors.
The various components have the following meanings:

initial_load If the getload resource is true (its default value), this is the load
average obtained from the node (over the period specified in
the loadperiod resource). If the remote procedure call to get the
load average fails, the value in the fallbackload resource is
substituted. If getload is false, then initial_load is set to 0.

One potential use of the fallbackload resource is designed to
prevent attempts to start new workers on nodes that have gone
down. If the RPC to get the load average for a node fails and
fallbackload is set to a large value, then it will be quite unlikely
that the node will be chosen by the scheduler. Setting
fallbackload to a value greater than threshold * speedfactor
will ensure that it is never chosen.

Nmaster 1 if the master process is running on the node, 0 otherwise.

masterload The second term in the numerator of the formula for the
adjusted load means that the value of the masterload resource
is added to the raw load average if the master process is
running on the node. This enables an estimate of how the  CPU
resources the master will eventually use to be included in the
adjusted load average (even though it is not currently
consuming them). Set masterload to a smaller value than its
default of 1 if it does not consume significant resources during
execution (for example, if it does not itself become a worker).

Nworkers The number of worker processes already started on the node.
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Table 1. Process Scheduling Resources

Resource Meaning Default 
Value

Equivalent
 ntsnet Option(s)

Scope

maxprocspernode Maximum number of processes 
that may be run on any node. 
Includes the master process on 
the local node.

1 -maxprocspernode n
-mp n

application-specific

getload Whether or not to use  current 
system load averages when 
scheduling workers on nodes.

true -getload/+getload application-specific

loadperiod The period  in minutes over 
which to compute load averages 
(when they are used for 
scheduling).

5 -loadperiod mins
-m mins

application-specific

threshold Maximum load allowed on a 
node; if the normalized load 
exceeds this value, then no 
worker will be started.

20 node-specific

speedfactor A number indicating relative 
CPU capacity compared to 
other nodes. Larger values 
indicate increased ability to run 
multiple workers. Used in 
computing the adjusted load 
average.

1.0 node-specific

masterload Load that the master process 
puts on its node (the local 
node). Used in computing the 
adjusted load average.

1 -masterload n application-specific

workerload Load that a worker process puts 
on its node. Used in computing 
the adjusted load average.

1 -workerload n application-specific

fallbackload Value to use if ntsnet is unable 
to obtain the current system 
load average. Setting this 
resource to a large value will 
ensure that nodes that are down 
will be excluded.

0.99 -fallbackload n application-specific

available Whether a node is available or 
not; useful for temporarily 
disabling a node without 
removing it from existing node 
sets.

true node-specific
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workerload The third term of the numerator adjusts the load average for
the number of workers the node already has running, even
though they are not yet consuming substantial CPU resources.
You can alter this value from its default of 1 to reflect your
estimate of how much load a single worker process adds.

speedfactor The speedfactor resource’s value is used to normalize the
corrected load averages for differing CPU speeds—and hence
different total capacities—on different nodes. Generally, a value
of 1 is given to the slowest system type within the network.
Faster systems will then be assigned correspondingly higher
speedfactor values. Multiprocessor systems are also given
higher speedfactor values, generally set to the value
appropriate for a single CPU multiplied by the number of
processors.

Once all the adjusted loads are calculated, ntsnet finds the node having the
lowest value, which presumably will be the most lightly loaded when execution
begins. It then checks its adjusted load against the value of its threshold
resource. If the adjusted load doesn’t exceed it, ntsnet next checks the number
of processes already started. If this number is less than the value of the
maxprocspernode resource, another process is started; otherwise, ntsnet
continues on to the next least heavily loaded node. This scheduling process
continues until maxworkers processes are started or until no qualifying node
can be found. The goal of the scheduling process is to minimize the load on the
maximally loaded node.

Here are some sample ntsnet configuration file entries showing the uses of these
resources:

Tsnet.Appl.getload: true
Tsnet.Appl.loadperiod: 10
! use the default speedfactor of 1 for these systems
Tsnet.Node.slowmach: priestley pinter
! fastguy is 5.25X slowmach
Tsnet.Appl.fastguys: sand stahl
! goethe has 2 heads and gogol has 4; each is 1.5X slowmach
Tsnet.Node.multiprocs: goethe gogol
Tsnet.Appl.nodelist: @slowmach @fastguys @multiprocs
! scheduler parameters
Tsnet.Appl.masterload: .5
Tsnet.Appl.workerload: 1
! maxprocspernode is set high so gogol can get a lot
Tsnet.Appl.maxprocspernode: 8
Tsnet.stahl.speedfactor: 5.25
Tsnet.sand.speedfactor: 5.25
Tsnet.goethe.speedfactor: 3
Tsnet.gogol.speedfactor: 6
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This file attempts to set speedfactor values for the various nodes reflecting their
relative CPU capacities. The maxprocspernode resource is set to a high value so
that the multiprocessor system with 4 CPU’s can run up to two workers per
processor.

Special Purpose Resources
ntsnet provides several resources for use with various optional features which
will be described in this section.

Keep Alive 
Facility

By default, each Network Linda process periodically queries some other process
in its execution group to make sure execution is still proceeding normally. If it
cannot find any respondent, it will eventually exit. Normally, this will also cause
ntsnet to terminate the entire computation.

These keep alive messages are sent out according to the time interval specified
in the kainterval resource (application-specific), whose default value is 100
seconds. The keep alive mechanism may be disabled entirely by setting the value
of the kaon resource (application-specific) to false (the default is true). The keep
alive interval may also be set with the -kainterval command line options, and the
kaon resource may be specified with -kaon/+kaon.

Tuple Redirection 
Optimization

By default, the Network Linda system uses tuple redirection, an optimization
designed to improve performance by detecting patterns in tuple usage and
attempting to place tuples on those nodes where they will eventually be used. If
successful, this optimization produces significant communications savings. This
feature may be disabled by setting the value of the redirect resource
(application-specific) to false (its default value is true). The value of this resource
may also be set with the -redirect/+redirect command line options.

Tuple Broadcast 
Optimization

Network Linda can optionally employ a tuple broadcast facility. This feature
transmits large tuples that it has identified as primarily rded (instead of ined) to
all nodes. To qualify, a tuple must be at least as large as the UDP datagram size in
use (the default value is 7800 bytes), and the compiler must be able to identify at
least one rd operation involving it.

This feature should be used with great care, since it has the potential of flooding
the network with traffic, degrading both application and overall network
performance. It is only useful when there are large tuples that will definitely be
needed by many nodes in the course of the computation and there is sufficient
local memory to store them.

Tuple broadcast optimization is enabled by setting the value of the bcast
resource (application-specific) to true (its default is false). It may also be set with
the -bcast/+bcast command line options.
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Broadcast tuples are stored in a broadcast cache on each node whose size is
determined by the value of the bcastcache resource (application-specific); its
default value is 1 MB. This size is a tradeoff between memory consumption and
hit rate. (When the broadcast cache fills up, the oldest tuples in it are discarded.)
The value of this resource may also be set with the -bcastcache command line
option.

Specifying an 
Alternate UDP 
Size

The udp resource (application-specific) can be used to change the default
datagram size of 7800 bytes. On faster networks, a larger size will usually
produce better network throughput. On the other hand, sometimes gateway
nodes cannot handle packets of even this size, so you may need to reduce it. The
value for this resource can also be set using the -udp command line option.

Disabling Global 
Configuration 
Files

The useglobalconfig and useglobalmap resources (both application-specific)
specify whether to use the entries in the global configuration file and global map
file in addition to the local files. In any case, local file entries take precedence
over those in the global files. The default value for both resources in true.
Command line options are available for both resources: -useglobalconfig/
+useglobalconfig and -useglobalmap/+useglobalmap. 

Generating 
Additional Status 
Messages

ntsnet can optionally display informational messages as program execution
proceeds. Whether and how frequently messages are displayed are controlled by
the verbose and veryverbose resources (both application-specific). Both are
mainly useful for debugging configuration and map files, and both default to false.
The command line options -verbose/+verbose (abbreviable to -v/+v) and
-veryverbose/+veryverbose (or -vv/+vv) can also be used to specify these
resources.

Process Initiation 
Delays

ntsnet initiates worker processes by running the rsh command in the
background on the local node, creating each successive process as soon as the
previous command returns. Under some unusual network circumstances, such a
procedure can overwhelm a network server process and result in errors. The
delay resource is provided to handle such situations. It specifies the amount of
time to pause between successive rsh command initiations, in milliseconds (the
default value is 0). If you experience such problems, try setting its value to 1000
(1 second). The -delay command line option may also be used to specify the
value for this resource.
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Appropriate Granularity for Network Applications
A network  environment often has a significantly different granularity profile from 
other parallel computing environments (such as shared or distributed memory 
multiprocessors) because its communications speed is so much slower. This is the 
result of the differing communications bandwidth achievable via Ethernet and 
typical hardware interconnects in parallel computers.  In general, networks 
impose relatively high communications overhead, and parallel programs need to 
be relatively coarse-grained to achieve good performance.

On a typical Ethernet network, an in/out combination takes at least 5
milliseconds, and maximum throughput is about 500KB per second. If N processes
want to communicate tuples of size S, each one takes about (KS/500000) + .005
seconds, and each process should attempt to do so no more frequently than once
every 

N * ((K/50000) + .005) 

seconds. For example, if there are ten processes and a typical tuple is 500KB, the
network can support communicating such a tuple about every second; therefore,
no worker should want to perform an in or out operation more often than about
every 10 seconds.

As new network interconnect technology is developed, the granularity effects
must be re-examined. The use of certain high speed switches, for example, may
give networks performance characteristics almost identical to distributed
memory parallel computers.

Forcing an eval to a Specific Node or System Type
While there is no way within an eval operation itself to force its execution on any
particular node or type of system, adding an additional function layer in front of
the target routine can accomplish this. Here is an example:

master()
for (i=0; i < NWORKERS; i++)

eval("worker", do_worker());

do_worker()
{ 
get the hostname or architecture type via standard system call
if (! strcmp(host, "moliere")) worker_1();
elseif (! strcmp(host, "goethe")) worker_2();
elseif (! strcmp(arch, "sparc")) sparc_worker();
and so on
}

The eval operation calls a generic worker function, do_worker, which
determines the hostname (or architecture type), and then calls the appropriate
real worker function. 
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Debugging Linda Programs

Linda programs are usually debugged using the Code Development System and
Tuplescope. This combination offers the most convenient and least intrusive
method of debugging. Tuplescope is an X-based visualization and debugging tool
for Linda parallel programs. In addition to the usual debugger features such as
single-step mode and breakpoints, Tuplescope can display tuple classes, data in
specific tuples, and visual indications of process interaction throughout the
course of a program run.

Tuplescope is part of the Linda Code Development System, which simulates
parallel program execution in a uniprocessor environment. It requires a
workstation running X Windows. This chapter assumes knowledge of standard
debuggers and debugging activities. Refer to the manual pages for your system or
to the relevant books in the Bibliography for information on these topics.

Program Preparation
Linda programs must be compiled with the -linda tuple_scope option in order
to use Tuplescope. The environment variable LINDA_CLC or LINDA_FLC should
also be set to cds (for Code Development System). For example, the following
commands will prepare the C-Linda program test24 for use with Tuplescope:

% setenv LINDA_CLC cds†

% clc -o test24 -linda tuple_scope test24.cl

† If you use the Bourne shell, the equivalent commands are: LINDA_CLC=cds; export 
LINDA_CLC.

Invoking 
Tuplescope

Once an executable has been prepared for use with Tuplescope, simply invoking
it will start the debugger. For example, the following command would initiate a
Tuplescope session with the test24 application we prepared above:

% test24 arguments

Of course, this command would need to be run from a shell window within an X
Windows session. If desired, you may also include X Toolkit options following the
program arguments to customize the resulting Tuplescope windows.
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The Tuplescope Display
Here is a canonical diagram of the Tuplescope display (note that exact window
properties and look depend on the window manager in use):

The Tuplescope display consists of two parts: the control panel window and
separate windows for each tuple class (tuple classes consist of the
compiler-generated distinct partitionings of tuple space, based upon tuple field
types and any unique constant strings). Note that the display above is
deliberately artificial and was constructed to present all of Tuplescope’s features
in a compact form rather than to represent any real (or even possible) situation.

The Control Panel The control panel is a separate Tuplescope window that contains these items:

➠ The name of the executable, appearing on both the window title bar and 
in a box in the upper left of the display.

➠ A series of menu buttons along the top of the window, labelled Modes 
through Quit. Clicking on a menu button with the left mouse button will 
reveal its associated menu, if any, or perform its designated action.

➠ A slider control bar in the upper right corner of the window. This control 
consists of a sliding bar which moves along a tick-marked area. The 
default position for the slider is at the far right end of the bar. Execution 
speed increases as the bar moves toward the right along the bar, with the 
extreme right end representing normal (full) speed. Moving the slider bar 
to a position left of this end will cause program execution to proceed at a 
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Figure 7. The Tuplescope Display
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slowed-down rate. This control may be used at any time during program 
execution to change its execution rate.
Slower execution rates represent a middle ground between single step 
execution mode, in which execution breaks at every Linda operation, and 
normal, full-speed execution.

➠ A series of tuple class window icons, placed along the bottom of the 
window, beginning at the left edge. These icons allow you to open tuple 
class windows that have been closed; in such cases, the icon is printed in 
normal, black lettering. Click on the icon with the left mouse button to 
open the corresponding tuple class window. Icons for currently open 
tuple class windows are grayed out, and clicking on them has no effect.

When a process is initiated with an eval, an icon for it briefly appears above the
tuple class window icons. This icon is a white-outlined black box containing a
white number within it; in the diagram, the sample icon contains the number 8.
This number functions as a sort of internal process ID and is incremented every
time a new process is created; it does not correspond to any user-assigned
numbering scheme. Once the process performs an operation on tuple space, this
icon disappears and the appropriate icon appears in one of the tuple class
windows.

Tuple Class 
Windows

A tuple class window has the following parts:

➠ A sizing box, located in the upper left corner of the window. This box, 
which is mainly black with two white veins running through it, controls 
the size of the window. Clicking on it has a different effect, depending on 
which mouse button is used:

Mouse Button Effect
Left Make window its minimum size
Middle Make window its medium size 
Right Make window its maximum size

➠ A textual representation of the tuple class, positioned to the right of the 
sizing box. This shows the tuple class’ structure. Here is an example:

   ("globals", INT, INT)

Clicking with the left mouse button on the tuple representation string will 
close the tuple class window.
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➠ Spherical icons for each tuple that exists in this class. Clicking on a tuple 
with the left mouse button will open a small window displaying its 
contents. For example:

   ("globals" 1000 225)

If a tuple contains a large amount of data, scroll bars will appear, and you 
can scroll through it, viewing one part of it at a time. Scrolling may also 
be accomplished with the keyboard arrow keys, which perform the 
following actions:

Key Scrolling Effect
Up arrow Scroll to previous line
Down arrow Scroll to next line
Ctrl-up arrow Scroll to previous page
Ctrl-down arrow Scroll to next page
Left arrow Move to the beginning of the 
tuple
Right arrow Move to the end of the tuple

If the tuple contains an aggregate, the latter’s contents will not be shown 
by default; instead, the word BLOCK will appear. The Modes and 
Aggregates menus control the display of aggregates (see below).

Clicking on an individual tuple window with the right mouse button will 
refresh its contents; clicking on it with the left mouse button will close it.

➠ Icons for processes which have accessed tuples in this class. The form of 
the icon varies depending on the operation that the process performed 
and its status. These are the possible icons (all icons contain the process 
number in their center):

Icon Appearance Meaning
Solid black arrow pointing up Successful in operation
Solid black arrow pointing down Successful out operation
White arrow in black box pointing up Successful rd operation
Solid black diamond Blocked in operation
White diamond Blocked rd operation

There are examples of each type of icon in the Tuplescope display 
diagram.

Viewing 
Aggregates

Whether or not aggregates are displayed is controlled by the Display Aggregates
item on the Modes menu. Clicking on the Modes button will display its menu,
and clicking on the Display Aggregates item will toggle its current state. If the
item is selected, a check mark will appear to the left of its name. You must
choose the Exit Modes Menu item in order to close the modes menu.
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When Display Aggregates is on, the Aggregates menu button is active, and its
menu may be used to select the data format for subsequent aggregates displays. It
contains the choices Long, Short, Float, Double, Character, and Hexadecimal.
Only one format choice is active at a given time, and its name will have a check
mark to its left. All other formats will be grayed out and unavailable. The default
format is Long.

To select a different format, first deselect the current format by choosing its
menu item. The check mark will then disappear, and the other formats will
become active. You may then select the desired format. Exit from this menu by
choosing the Exit Aggregates Menu item.

What format a tuple containing an aggregate uses depends on the Dynamic Tuple
Fetch setting on the Modes menu. If Dynamic Tuple Fetch is active, then an
aggregate is displayed in the Aggregates menu display format in effect when you
click on its tuple icon. If Dynamic Tuple Fetch is not in effect, then the format
that was in effect when the tuple entered tuple space will be used regardless of
the current setting.

Viewing Process 
Information

Clicking on a process icon will produce a scrollable file window containing the
text of the source file corresponding to it (Tuplescope requires source files to be
in the current working directory). The line containing the tuple space operation
corresponding to that icon will be indicated by a caret (“^”). Scroll bars or the
keyboard scrolling keys may be used to examine the source file. To close the
window, click the left mouse button anywhere within it.

Tuplescope Run Modes
Tuplescope has a number of different modes for program execution. First,
execution speed can be controlled with the slider control on the Tuplescope
control panel discussed previously. This is independent of the other run controls
we’ll look at in this section.

Clicking on the Run button will commence program execution. The program will
execute in either normal or single step mode, depending on the setting of the
Single Step item on the Modes menu. When single-step mode is in effect,
Tuplescope will execute until the next Linda operation takes place. Tuplescope
assumes that required source files are in the current directory.

It is not possible to execute a program more than once within a single
Tuplescope session. To rerun a program, exit from Tuplescope and restart it.

Clicking on the Break button will cause program execution to pause at the next
Linda operation. Execution will resume when you click on the Continue button,
which may also be used to resume execution in single step mode.

To exit from Tuplescope, click on the Quit button.
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Using Tuplescope with a Native Debugger
The following method is recommended for combining Tuplescope with a native
debugger like dbx:

➠ Compile the program for Tuplescope and the native debugger by 
including any necessary compiler options on the clc command (i.e. 
-g for dbx, -linda tuple_scope for Tuplescope).

➠ Execute in single-step mode in Tuplescope until the desired process is 
created.

➠ Click on the new process icon with the middle mouse button. This will 
create a new window running the native debugger attached to that 
process.

➠ Set desired breakpoints in the native debugger. Then turn off single step 
mode in Tuplescope.

➠ Give the continue execution command to the native debugger to resume 
execution of that process (e.g. use the cont command in dbx).

You may now use the native debugger to examine the process. Figure 8 illustrates
a sample combination debugging session.

By default, the debugger started is dbx, except under HP/UX where it runs xdb in
an hpterm window. A different debugger may be specified by setting the
DEBUGGER environment variable to it. If the executable is not in the current
path, give the entire pathname as its value; otherwise, its name alone is
sufficient. Currently-supported debuggers are dbx, gdb, and xdb (under HP/UX).

test24

2

3

test24 Modes Aggregates Run Break Continue Debug Save Quit

globals task result worker

(”globals”, INT, INT)

exec 3 (worker)

dbx version 3.1 for AIX.
Type 'help' for help.
reading symbolic information ...

(dbx) 

Figure 8. Using Tuplescope with a Native Debugger
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It takes a little practice to understand all the nuances of Tuplescope-native
debugger interactions. The trickiest part is usually figuring out where the next
continuation command needs to be executed. If the Tuplescope Continue button
does not resume execution, try issuing a next command to the native debugger
process(es).

To exit from a native debugging session without affecting Tuplescope, detach
from it before quitting (in dbx, give the detach command, followed by quit).
Quitting without detaching first will usually abort the process and cause the
Linda program to fail.

It is recommended that you quit from all native debugger processes before
exiting from Tuplescope. Pressing the Tuplescope Quit button while debugging
windows are still open causes their processes to be terminated “out from under
them.” Tuplescope will make no attempt to stop the debugger processes, so you
will have to do it manually. Some debuggers have difficulty shutting down in this
state, so you may have to use the UNIX kill command to stop those processes.

Debugging Network Linda Programs
There are two ways of debugging a Network Linda program:

➠ Use the ntsnet debug option.
➠ Manually start program execution on each node.

This section will look at each of them in turn. Note that both discussions will
assume that you have properly prepared executables for use with a debugger by
compiling them with -g.

ntsnet’s Debug 
Mode

The -debug option to the ntsnet command initiates Network Linda program
execution in debug mode. Including this option on the command line starts an
xterm process running the debugger specified by the debugger resource on each
participating node. The value for the debugger resource defaults to dbx; the
other currently-supported debugger is gdb (the debugger from the Free Software
Foundation). Setting the value for debugger to none effectively disables
debugging on a particular node, as in this example:

Tsnet.moliere.debugger: none
Tsnet.Node.debugger: gdb

The second configuration file command sets the default value for the debugger
resource to gdb, while the first line prevents debugging on node moliere. The
debugger resource is node-specific.

For example, the following command will create three debugging windows
executing the program test24 on nodes selected from the ntsnet node list in the
usual way:
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$ ntsnet -debug -n 2 test24

The node and application name will appear in the title bar of each window.

Once all of the debugger processes have started up, you can set breakpoints, run
in single step mode, examine variables, and perform all other normal debugging
functions for each process. ntsnet facilitates program initiation by defining the
alias lrun within each debugging session to be the appropriate command line to
begin application execution. You should use this alias, rather than the debugger’s
normal program initiation command (e.g., run in dbx).

Once the program has finished executing, the controlling (master) process will
exit and the debugger prompt will appear in the corresponding window. However,
the other (worker) processes will not return. To terminate all program processes,
enter the quit command to the debugger for the master process, and ntsnet will
automatically terminate all of the other processes.

The debug resource (application-specific) can be used instead of the command
line option. A value of true is equivalent to including the command line option
(the default value is false).

The following are some hints on running Network Linda programs in debug
mode:

Keep in mind that each process is handling a portion of tuple space in addition to
running the application program. Therefore, when a process is paused—for
example, at a breakpoint—then no tuple space requests can be handled by it. For
this reason, it’s best to break only a single process at a time, with all other
processes either continuing or stepping through a (blocked) in or rd operation.

➠ ntsnet relies on the command search path being set appropriately on all 
remote nodes. Specifically, the locations of xterm, dbx, sh, and rcp need 
to be in the search path. Note that remote Network Linda processes are 
initiated with rsh (not rlogin). Hence, make sure that the PATH 
environment variable is set properly even if the login initialization file is 
not executed. You can test this by running rsh manually, and you can 
ensure this by placing the variable’s definition in ~/.cshrc rather than 
~/.login if you use the C shell.

➠ In some network configurations, it may be necessary to give remote hosts 
access to the local X server. This is the purpose of the xhost command. 
You will need to run xhost if you see error messages like this one:

Xlib: Client is not authorized to connect to Server

If it is required, you can execute the xhost command manually. For 
example, the form xhost + grants access to the local X server to all remote 
hosts. You can also specify a list of nodes (check the man page for details). 
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Alternatively, you can modify the linda_rsh shell script (located in the 
bin subdirectory of the Linda tree), adding the option -access to the 
xon command, which causes the latter script to run xhost automatically.

➠ ntsnet’s debug mode also changes the default values of some other 
resources:

➩ The kaon resource defaults to false.
➩ The workerwait resource defaults to 1000000 seconds.
➩ The maxwait resource defaults to 1000000 seconds.
➩ The nice resource is overridden to be false.

➠ ntsnet ensures a consistent dbx environment across all nodes by copying 
the .dbxinit file from the local node to all participating remote nodes. 
The dbx command ignore IO is also often useful when debugging Network 
Linda programs.

There are some other issues related to debugging in a heterogenous
environment. Consult the release notes for architecture-specific details.

Running 
Network Linda 
Programs 
Without ntsnet

Network Linda programs can also be executed manually, without involving
ntsnet at all. These are the steps for doing so:

➠ Establish a session on each desired remote node (via rlogin for example). 
It will be most convenient to start each discrete session in a separate 
window. In general, start as many processes as you would when executing 
the program with ntsnet. If you plan to use a debugger, start it on the 
desired remote nodes.‡

➠ In the session where you will start the master process, make sure that the 
LINDA_PATH environment variable is set correctly. It should point to the 
top-level Linda installation directory, and the directory specification 
must include a final slash.

➠ Begin program execution using the following command formats:

‡ Of course, to do so effectively, the application will need to have been compiled with -g.

Master session application [appl-arguments] +LARGS -master port [linda-args]

Worker sessions application +LARGS -worker masternode:port [linda-args]

where application is the program command, appl-arguments are the 
application’s arguments (if needed), linda-args are any Network Linda 
run-time kernel options (listed below), port is the port number over 
which the master will communicate with the workers (any reasonable 
port number may be used—try a value between 2000 and 5000—and the 
same port is used by all processes), and masternode is the name of the 
host where the master process runs.
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The possible run-time kernel options are listed below; see the previous 
chapter for more detailed discussions of their meanings and use:

➩ ±bcast
➩ –bcastcache
➩ –chdir
➩ ±high
➩ –kainterval
➩ ±kaon
➩ –maxworkers
➩ –minworkers
➩ ±redirect
➩ –udp
➩ –maxwait
➩ –minwait
➩ –workerwait

The default values for most options are the same as under ntsnet; the 
exceptions are -kaon, which defaults to false, and -maxworkers, which 
defaults to 1.

➠ Keep in mind that each process is handling a portion of tuple space in 
addition to running the application program. Therefore, when a process 
is paused—for example, at a breakpoint—then no tuple space requests 
can be handled by it. For this reason, it’s best to break only a single 
process at a time, with all other processes either continuing or stepping 
over an in operation.

➠ When execution has completed, you will need to terminate all of the 
processes manually. Normally, ntsnet takes care of this function.

The Postmortem Analyzer
The run-time Tuplescope debugger is complemented by a postmortem analyzer
that simulates tuple space operations based on trace information collected
during execution.†

† Only available for Network Linda currently.

Program 
Preparation

In order to use the postmortem analyzer, an application must be compiled with
the -linda tuple_scope option (just as is true for normal Tuplescope). Run the
program in the normal way. When the program finishes, it leaves several files in
the directory from which it was invoked. For each Linda process that executes
tuple space operations, there is a file named program.N.o where program is the
executable name, and N is the process number. For each process that generates
tuples, there is a file of the form program.N.t.
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The tuple space operation data in these files must be combined into a single
ordered file before the postmortem analyzer can be used. The pmbuild utility in
the bin subdirectory of the Linda tree is used for this purpose:

$ pmbuild program
This command produces an executable file named program.pm. 

Invoking the 
Postmortem 
Analyzer

Simply executing the .pm file will invoke the postmortem analyzer. Don’t include
any arguments (regardless of whether the original program needed them).

The user interface for the postmortem analyzer is essentially identical to that of
the run-time debugger. The Dynamic Tuple Fetch option is not available since
tuple space operations are only simulated. In addition, aggregate display is not
supported in the postmortem analyzer.

There is one new debugging mode: Reverse Execution. When it is in effect, it is
possible to reverse the sequence of tuple space events at any point in the
simulated execution process. The direction of execution can be changed any
number of times. By scrolling execution forward and backward, it is often
possible to locate a bug without having to restart the program from the
beginning.

The Tuplescope Debugging Language
Clicking on the Debug button brings up a menu that can be used to create,
compile, and control debugging programs written in the Tuplescope Debugging
Language (TDL). TDL is the means Tuplescope provides for users to specify that
certain actions be taken on various program conditions. The various items on
this menu have the following meanings:

Item Effect
Edit program.debug Edit the TDL program for this application.
Compile program.debug Compile the TDL program for this application.
Clear Debugging Actions Cancel all debugging actions in effect.
Exit Debug Menu Close the Debug menu.

The Edit and Compile items edit and compile the file program.debug where
program is the name of the application running under Tuplescope. Edit will open
an editor in a separate X window, using the contents of the EDITOR environment
variable to determine which editor to run.

The Compile item causes the file to be translated into an internal form used by
Tuplescope. Successful compilation results in the message Compilation done.
Otherwise, an error message is printed. Once compiled, the statements in the
debugging program go into effect until cancelled by the Clear Debugging Actions
item.
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TDL Language 
Syntax

TDL programs consist of one or more lines of the following form:

if (condition) then action
where condition is a test condition, and action is some action to be taken when
the test is true (1). Note that the parentheses are part of the condition.

Conditions are formed from the following components:

[item operator test_value]

Note that the brackets are a required part of the syntax.

There are three distinct kinds of conditions:

➠ Tuple field comparison tests, where item is field N (where N is an 
integer), operator is one of the C operators ==, !=, > and <, and test_value 
is a constant. This sort of test selects tuples on the basis of one or more of 
their fields. For example:

  [field 2 == 2]

This test chooses tuples whose second field contains the value 2.

Character strings used as constants must be enclosed in double quotation 
marks. Single characters must be enclosed in single quotation marks.

Note that tuples from distinct tuple classes can be selected by the same 
tuple field comparison. Fields containing aggregates may not be used in 
such conditions.

➠ Tuple space operation tests, where item is linda_op, operation is either 
== or !=, and test_value is one of the following: eval, out, in, rd, 
block_in, and block_rd. This kind of test detects the occurrence of a 
particular kind of Linda operation. Here is an example: 

  [linda_op == eval]

This condition detects the occurrence of an eval operation.

➠ Process comparison tests, where item is process, operation is one of ==, 
!=, < and>, and test_value is an integer, representing a Tuplescope 
process number. This sort of test detects when any tuple space operation 
is performed by any process whose process number fulfills the condition. 
For example, this condition detects when any process with process 
number less than 5 accesses tuple space:

    [process < 5]

Multiple conditions may be joined with and or or, as in this example:
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[process < 5] and [linda_op == out]

The entire composite condition is enclosed in parentheses in the complete TDL
statement, as we’ll see below.

Action may be one of the following: 

Action Effect
break Pause program execution; resume execution with the Continue

button. If a tuple is associated with the tuple space operation that
triggers a break, Tuplescope turns it solid black. The process
which performed that tuple space operation is marked by a notch
in its icon. (Ordinary display of all tuples and process icons is
restored when you click the Continue button.)

hide Suppress display of matching tuples or processes. This may be
used to filter out unwanted tuples or processes.

color color Change matching items to the indicated color. Color must be on
one of: red, orange, yellow, green, blue, indigo, and
violet. On monochrome displays, the colors are mapped to
distinct black and white pie-shaped icons.

save Dumps the contents of tuple space to a disk file. This is
equivalent to clicking on the Save button during program
execution. Save operations are not legal when the Dynamic Tuple
Fetch option is in effect.

Here are some examples of complete TDL statements:

if ([linda_op == out]) then color red
if ([process < 5] or [process > 7]) then hide
if ([linda_op == out] and [field 2 != 0]) then break

The first statement turns the process icons for processes performing out
operations the color red. The second statement hides all process icons except
those for process numbers 5 and 6. The final statement causes execution to
pause whenever a tuple is placed in tuple space whose second field is nonzero.
Note the syntax of the TDL statements, including both the parentheses and
square brackets which must surround conditions.
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6
Creating Piranha Programs

This chapter presents the Piranha model of parallel computing.† Piranha was
motivated by the observation that most networked workstations are idle the
majority of the time. These wasted cycles represent a large potential source of
computation, but must be used carefully, without impacting the interactive users
of the machines.

Piranha allows parallel programs to make use of machine idle cycles without
interfering with other uses of the machines, including interactive use. At any
given time, Piranha declares machines as either idle or busy, depending on such
criteria as load average or keyboard or mouse activity. When machines become
idle, they will join the Piranha computation. When they become busy again, for
example because the owner of the machine begins typing, the machine will
immediately cease work on the Piranha computation.

Piranha programs often share many characteristics with other Linda programs.
They use tuples and tuple space for communication and synchronization, and
much of the preceding discussion in this manual will apply to them. Structurally,
Piranha programs differ from other Linda programs most strikingly in that they
do not explicitly initiate worker processes with eval operations. Instead, this
function is handled entirely by the Piranha system, subject to the constraints set
up in the user’s Piranha configuraiton file (described later in this chapter), which
specifies which systems within a network are to be used for Piranha execution
and the circumstances under which each one is available.

Piranha programs are often simpler than pure Linda programs because they do
not need to deal explicitly with process creation. The programs most suited to
being expressed in Piranha are master/worker algorithms with minimal data
dependency between tasks. However, it is possible to write Piranha programs
that have significant inter-task dependencies. See the LU factorization case study
later in this chapter for an example of an application with strong synchronization
requirements.

† Piranha is currently only supported on the Network version of Linda.
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Piranha Program Structure
Piranha programs do not use eval operations or the real_main routine
discussed previously. Instead, all Piranha programs are required to provide three
procedures: feeder, piranha, and retreat.

feeder The feeder routine is analogous to real_main in regular Linda programs. It
generally functions as the master, and is invoked on the local node when a Piranha
program begins execution. It is responsible for generating tasks for and collecting
results from the worker processes. The process running feeder is special in that
it never retreats; in fact, the Piranha system will call lhalt when feeder
returns, terminating program execution. (Of course, any process in the program
may also call a Linda halt function at any time in order to terminate execution
immediately.) feeder is passed the invocation (command line) arguments when
it is invoked.

piranha The piranha routine is executed by the worker processes created by the Piranha
system. This function is often written as an infinite loop, each iteration of which
processes a single task. This routine will execute until it completes or it is forced
to vacate the node on which it is running. In the latter case, the Piranha system
automatically calls the retreat function. In such circumstances, the process
does not actually exit, but rather enters a wait state, from which it may start anew
if the node becomes available again.

retreat The retreat routine is what allows a piranha process to discontinue executing
without affecting overall program integrity or results. At a minimum, it is
responsible for returning any unfinished (or partially finished) tasks to tuple
space, to be retrieved by some other piranha process. More complex versions
also provide needed data and state information for partially finished tasks which
will allow a different piranha process to take them up at the point where they
left off, rather than having to restart them from the beginning.

enable_retreat 
and 
disable_retreat

The Piranha system also provides two additional functions: enable_retreat
and disable_retreat. These routines allow critical sections of the program to
be protected against retreats. In general, SCIENTIFIC recommends that retreats
be disabled whenever Linda operations are executed.

enable_retreat indicates the beginning of a program section where retreats
are allowed. Until the first invocation of this operation, retreats are disabled
within a Piranha program.

disable_retreat prevents retreats, marking the end of the program section
begun with the enable_retreat operation. Looked at another way,
disable_retreat marks the beginning of a protected region of the program,
during whose execution retreats are not allowed.
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The variant forms task_start and task_done are equivalent to
enable_retreat and disable_retreat, respectively.

Program 
Termination

A Piranha program terminates in one of two ways:

➠ When feeder returns.
➠ When any process calls lhalt or flhalt.

In either case, all running piranha processes will be terminated automatically.
No routine in a Piranha program should ever call lexit or flexit.

A Simple Piranha 
Program

The following C program will demonstrate all of the Piranha constructs. It can be
used as a template to create your own Piranha programs:

TASK *task, *get_task(); 
RESULT f(); 
int index;

feeder(argc, argv) 
int argc; 
char **argv; 
{ 

RESULT result; 
int count;

for (count=0; task=get_task(count); ++count) 
out("task", count, *task);

while (count--) { 
in("result", ?index, ?result); 
process_result(index, result); 
} 

}

piranha() 
{ 

RESULT result; 
in("task", ?index, ?task);
enable_retreat(); 

result = f(task); 
disable_retreat();
out(“result”, index, result); 

}

retreat() 
{ 

out("task", index, task); 
} 
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get_task returns a pointer to a task structure, or NULL if there are no more
tasks. f is the function that we want to invoke in parallel; it performs the real work
of the program. Finally, notice that both index and task are global variables.
This is necessary in order to make them accessible to the retreat function in
piranha.

percolate: A Monte Carlo Simulation
The following C program is a more advanced example of Piranha functionality. It
is a Monte Carlo simulation named percolate. Here is a simplified version of its
feeder function. The program begins by processing its arguments, setting some
global parameters, and placing them into tuple space:

feeder(argc,argv)
int argc;
char **argv;
{

/* set up global parameters & put into tuple space */
set_params(argc, argv, &params);
out("params", params, X_STEP);

feeder’s main for loop creates tasks and gathers results, each within their own
for loop:

/* loop over series */
for (x=params.gmax_x; x <= MAX_X; x += X_STEP) {

tasks_out = 0;  /* reset for each series */

/* create tasks, being careful not to flood TS */
for (tasks_out=0; tasks_out < WATERMARK &&

tasks_out < NUM_TRIALS; tasks_out++)
out("task", x, tasks_out+MIN_SEED);

/* gather results; put out more tasks if approp. */
for (i=0; i < NUM_TRIALS; i++) {

in("result", x, ?result);
data_out(&result, &list, NUM_TRIALS);
if (tasks_out < NUM_TRIALS) {

out("task", x, tasks_out+MIN_SEED);
tasks_out++;
}

}

out("task", x, NEXT_X);  /* go on to next series */
}

} /* end of feeder */
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The program performs the simulation MAX_X times; each iteration of the
outermost loop corresponds to one series of trials, with a distinct value for the
variable x. Within each series, this feeder routine creates NUM_TRIALS tasks.
The second for loop creates up to WATERMARK tasks; if WATERMARK is less than
NUM_TRIALS, the remaining tasks are created in the second for loop as the
“result” tuples are gathered. This watermarking technique is used to avoid filling
up tuple space with the large number of task tuples required by this program.
The reason we out tasks_out+MIN_SEED in addition to x is to give each task a
unique, non-trivial seed for the random number generator.

Once all of the results for the given series of trials are retrieved, the program
places a “task” tuple into tuple space with the special value NEXT_X as its third
argument. This will tell the piranha (worker) processes that a new series is
beginning.

The piranha routine for this program begins by reading in the global parameters
and assigning an initial value to the variable x:

void piranha()
{

rd("params", ?params, ?x_step);
x = params.gmax_x;

Next, piranha enters an infinite while loop, and retrieves the next task from
tuple space:

while (1) {
in("task", x, ?seed);

/* new series */
if (seed == NEXT_X) {

/* put task back for others to use */
out("task", x, seed);
/* increment gmax_x and reassign x */
params.gmax_x += x_step;
x = params.gmax_x;
}

else {
enable_retreat();  /* allow retreats */
percolate(seed, &params, &result);
disable_retreat();  /* no retreats anymore */
out("result", x, result);
} /* end if-then-else */

} /* end while */
} /* end piranha */

The first section of the if-then-else construct handles the special case task for a
new series; the second section performs the actual computation. The real work is
done by the routine percolate, which essentially corresponds to the original
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sequential program (minus argument handling and global parameter setting).
While percolate is running, retreats are enabled, and the Piranha system can
shut down the piranha process. At all other times, retreats are disabled.

Here is the retreat function for this program:

retreat()
{

out("task", x, seed);
}

This simple function simply places the current task back into tuple space, where
some other piranha process will retrieve it and perform it in its entirety.

Building and Running Piranha Programs
One the three required routines have been created, a Piranha program can be
built. The process for doing so is very similar to that described for Linda
programs. Piranha programs require only that two additional modules—supplied
with the Piranha system—be linked into the final executable.

Here is a sample command to create the percolate executable:

% clc -o percolate percolate.cl \
  $LINDA_PATH/lib/{piranha.lo,piranha_sys.o} -lrpcsvc

This command assumes that the environment variable LINDA_PATH has been
defined as the top-level directory of the Linda installation tree. Of course, a
literal directory specification could also be used. The rpcsvc library is what is
required on Sun systems; consult the release notes for the name of the
equivalent library and other specific requirements for your computer system.

Piranha programs are executed using ntsnet, just like any other Network Linda
program:

$ ntsnet percolate arguments

LU Factorization Using Piranha
Separating a matrix into lower triangular and upper triangular matrices is a
mathematical technique useful for solving systems of linear equations. It is
commonly found in numerically-intensive applications. This section discusses a
Piranha program for performing LU factorization.

This example is relatively complex. We chose this example because it
demonstrates that the Piranha system can handle real world problems, with
non-trivial inter-task communication. Look in the examples directory in the
Linda tree for additional sample Piranha programs (some of which are quite a bit
simpler than this one).
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The complexity in this program arises from the fact that factoring one column of
the matrix depends on the results of factoring all previous columns. As long as no
process retreats during execution, this data dependency is easily handled by
assigning the tasks in column order. However, once a retreat occurs, the program
must prevent deadlocks which would occur if all remaining piranha processes
were waiting for the result of the task abandoned by the process that retreated.
This program handles that case in an ingenious way, essentially “conning” one of
the waiting processes into doing the work itself.

In this program, the feeder routine is responsible for initial setup, placing data
into tuple space, creating the task tuple that starts worker execution, and
collecting results:

feeder(argc, argv)
int argc;
char *argv[];
{

Setup.
out("dimension", dim);  /* send matrix dim to TS */

matgen(a, b);  /* initialize matrix */
for (i=0, ap=a; i < dim; i++, ap+=dim) 

out("unfactored", i, 0, ap:dim);

out("task", 0);  /* start workers */

for (i=0; i < dim; i++)  /* rd results (status == 1) */
rd("factored", i, ?pivot, ?b:, 1);

in("task", ?int);  /* clean up TS */
}

feeder sets up the matrix to be factored by calling matgen. It then places the
columns of the matrix into tuple space, creates the “task” tuple, and then
collects the result columns created by the various workers. The template for the
“factored” tuple requires that the final field hold a 1, indicating a successfully
processed column. Finally, feeder removes the “task” tuple from tuple space
and exits.

The workers run this piranha routine:

void piranha(argc,argv);
int argc;
char *argv[];
{

rd("dimension", ?dim);
sav_dim = dim;  /* save dim for a retreat */

/* get local work space */
a = (double *) malloc(sizeof(double)*dim*dim);
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if (a == NULL) {
fprintf(stderr, "piranha: malloc failed for a\n");
return;
}

sav_a = a;  /* save a for retreat */

ipvt = (int *) malloc(sizeof(int)*dim);
if (ipvt == NULL) {

fprintf(stderr, "piranha: malloc failed for ipvt\n");
free((char *) a);
return;
}

sav_ipvt = ipvt;  /* save ipvt for retreat */

vec = (double *) malloc(sizeof(double)*dim);
if (vec == NULL) {

fprintf(stderr, "piranha: malloc failed for vec\n");
free((char *) a);
free((char *) ipvt);
return;
}

aread = a;
first_unread = 0;

This section of the routine allocates local memory for the process, and it
illustrates good programming practices for Piranha programs. It checks the
return values for every malloc operation. If any of them fail, then all previously
allocated memory is freed, and piranha exits. In the first two cases, when
memory allocation is successful, then the starting addresses are saved. This is so
the memory they correspond to can be freed in the event of a retreat, a task
which it is important not to overlook.

The final two assignment statements prepare for the first iteration of the
routine’s while loop. The algorithm requires that all completed matrix columns
to its left be used to process the current column. However, when the routine
begins work on a second column—a second task—there is no need to reread
columns it needed for the first column it processed. The variable
first_unread holds the column number of the first column that the routine
has never read.

Here is the code which processes a matrix column:

while (1) {

in("task", ?pvt_col);  /* get column to process */
out("task", pvt_col+1);
sav_pvt_col = pvt_col;  /* save for retreat */
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if (pvt_col < dim) {  /* check if work remains */
/* get column to work on */
awrite = a + dim * pvt_col;
in("unfactored", pvt_col, ?int, ?awrite:);
bcopy(awrite,vec,dim);  /* save data for retreat */
x = a;
y = awrite;
n = dim;

enable_retreat();  /* allow retreats now */
if (first_unread > 0) {  /* use saved columns */
   /* pivot new column for all prev. read columns */
   npivot(0, first_unread, ipvt, awrite);
   /* computations with prev. read columns */
   gaxpy(n, x, dim, first_unread, y);
   x += dim*first_unread+first_unread;  
   y += first_unread;
   n -= first_unread;
   }  /* finished with prev. read columns */

/* loop over unread columns left of current column */
for (i=first_unread; i < pvt_col; i++) {
   rd("factored", i, ?ipvt[i], ?aread, ?status);
   if (status == 0) {
   /* col is unfinished due to retreat; finish it */
      npivot(0, i, ipvt, aread);
      gaxpy(dim, a+dim, dim, i, aread);
      pvtscal(dim, i, ipvt, aread);

      disable_retreat();
      in("factored", i, ?int, ?double*:, ?int);
      out("factored", i, ipvt[i], aread:dim, 1);
      enable_retreat();
      }  /* incomplete column finished */
   aread += dim;
   first_unread++;

   /* do pivot swap when needed */
   if (ipvt[i] != i) {
      dswap(i, a+i, dim, a+ipvt[i], dim);
      s = awrite[i];
      awrite[i] = awrite[ipvt[i]];
      awrite[ipvt[i]] = s;
      }
   /* apply column to curr. column & update pointers*/
   gaxpy(n, x, dim, 1, y);
   x += dim + 1;
   y++;
   n--;
   }  */ end for */
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pvtscal(dim, pt_col, ipvt, awrite);
aread += dim;
first_unread++;
disable_retreat();
out("factored", pvt_col, ipvt[pvt_col], awrite:dim, 1);
}  /* end if (pvt_col < dim) */

This routine is designed to be able to handle any of the several situations in
which it may find itself. Its infinite while loop will continue as long as there is
work to be done. Its first action is to retrieve and increment the “task” tuple.
Next, it checks whether the column number retrieved is greater than the
maximum dimension of the matrix. The code presented so far handles the case
where it is not, which indicates that there are still unassigned columns to be
processed.

After retrieving the unfactored column from tuple space and saving a copy of it to
be used in the event of a retreat, piranha first processes the column with all
previously read factored columns (if any). Then it loops over the columns to the
left of the current column that have not previously been read and saved. It uses
the routines npivot, gaxpy, and pvtscal to perform the pivot and daxpy
operations required to factor the matrix.

For each one, the routine checks to make sure that the status field in the
“factored” tuple is non-zero; a zero value indicates a column that was assigned
but not completed by a piranha process that was forced to retreat. If it finds an
uncompleted column, it finishes processing it and replaces it in tuple space
(protecting against retreats as it does so), this time with a 1 in its status field.

Once piranha has obtained the required column, it uses it to process the
current column and then returns to the top of the for loop.

After successfully retrieving or reprocessing each matrix column, the routine
also updates the first_unread variable to reflect the fact that it now has the
completed version of the column. Similarly, when the current column has been
processed and placed in tuple space (again with a status of 1), first_unread is
again updated since there will be no need to reread that column when working
on a subsequent one.

The other branch of the outermost if statement is executed when the task tuple
contains a column number larger than that of the final matrix column:

else {  /* no unassigned columns left */
/* loop over all unread columns, looking for
   any that are unfinished (status == 0)     */
if (first_unread < dim) {
   enable_retreat();
   for (i=first_unread; i < dim; i++) {
      rd("factored", i, ?ipvt[i], 

?aread:, ?status);
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      if (status == 0) {
         npivot(0, i, ipvt, aread);
         gaxpy(dim, a+dim, dim, i, aread);
         pvtscal(dim, i, ipvt, aread);

         disable_retreat();
         in("factored", i, ?int, ?double*, ?int);
         out("factored", i, ipvt[i], 

aread:dim, 1);
         enable_retreat();
         }  /* end processing of column */

      aread += dim;
      first_unread++;
      }  /* end for loop over unread columns */

   disable_retreat();
   }  /* end if (first_unread < dim) */

break;  /* all columns done, so exit while loop */
}  /* end if-then-else */

}  /* end while */

free((char *) a); /* free memory */
free((char *) ipvt);
free((char *) vec);

return;
}  /* end piranha */

This code executes when all matrix columns have been assigned. It reads all
columns it has never previously read, checking their status field for a zero value,
indicating that a process had to retreat before completing it. It processes any
uncompleted columns that it finds. This code protects against the case where all
processes except the one processing the last column exit and that process then
has to retreat, leaving the feeder waiting for that last column forever.

Once all columns have been retrieved by the feeder, it will exit, causing any
remaining piranhas to be terminated. Thus, if more than one piranha starts
working on an uncompleted column, the program will only execute until one of
them finishes.
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Here is the retreat routine for this program:

retreat()
{

fprintf(stderr, "%s is retreating\n", host);

if (sav_pvt_col < dim) /* a column was in progress */
out("factored", sav_pvt_col, 0, vec:sav_dim, 0);

free((char *) sav_a); /* free memory */
free((char *) sav_ipvt);
free((char *) vec);

return;
}  /* end retreat */

retreat prints a message to standard error, writes a “factored” tuple if it was
processing a column, placing a zero in its status field, frees its memory, and then
exits. The uncompleted column will eventually be completed by a piranha
process, either in the process of factoring a different column or after all of the
columns of the matrix have been assigned.

The Piranha Configuration File
The Piranha system has its own system-wide configuration file, /usr/etc/
piranha.config. It is used to specify the conditions under which execution
can proceed on the various available nodes.

The entries in the Piranha configuration file are of the form:

programspec*nodespec*userspec*resourcespec: value

where programspec is either the class name Tsnet or the specific instance
piranha, nodespec is the class Node or the name of an individual node,
userspec is either the class User or a specific username (on the local node), and
resourcespec is the name of a resource (available resources are discussed
individually below), which is to be assigned the specified value.

The enabled resource determines whether Piranha may run on a node at all. The
default value is true.

When it is allowed to run on a node, the Piranha system looks at system load
average and device idle times when deciding whether or not to start a piranha
process on a node; the same considerations determine when a process  needs to
retreat. The idle resource specifies how long user devices (such as the keyboard)
must be idle before the Piranha system can use that node (in seconds, with a
default  value of 300). 
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The retreat resource specifies how high the load average on the system may go
before a running piranha must retreat. Its value is a floating point number and
defaults to 3.0. The loadperiod resource specifies the number of minutes over
which the load average is computed (the default value is 5). The retreatcheck
resource specifies how often a piranha should check if it should retreat while it
is running (in seconds); the default value is 10.

Once a Piranha process has retreated, it may still become active again provided
that system load decreases sufficiently. The condition specified by the idle
resource must be fulfilled, as well as that imposed by the advance resource. The
latter specifies how low the load average must drop before the piranha may
advance (resume execution). It is designed to prevent the piranha’s retreat
from reducing the load average sufficiently to allow it to immediately restart. The
default value is 1.9. The advancecheck resource specifies how often a
suspended Piranha process should check if conditions allow it to advance or not
(in seconds); the default value is 500.

Here are some sample Piranha configuration file entries:

piranha*moliere*chavez*idle: 600
piranha*moliere*chavez*retreat: 4.0
piranha*moliere*chavez*advance: 2.5
piranha*moleire*chavez*retreatcheck: 5
piranha*moliere*User*retreat: 2.5

The first four lines apply only to user chavez on the node moliere. They set the
idle time required before a piranha executes to 10 minutes. A Piranha process
must retreat when the load average rises above 4.0, and it cannot advance until it
falls below 2.5. A running process must check conditions every 5 seconds. The
final line applies to all other users on moliere, and it indicates that a Piranha
process must retreat whenever the load average rises above 2.5.

We recommend that you use the “loose binding” style format, as in the sample
entries, for your Piranha configuration file (replacing period separators with
asterisks). This choice will allow your configuration file to continue to work even
if the file’s format changes in the future (for example, to add an additional
component).
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Linda Usage and Syntax Summary

Linda Operations
in(s) Withdraw a tuple matching s from tuple space. If no matching

tuple is available, execution suspends until one is. If more than
one matching tuple exists, one is chosen arbitrarily. When a
match is found, the actuals in the matching tuples are assigned to
the formals in the corresponding fields of s.

rd(s) Look for a tuple matching s in tuple space. If a matching tuple is
found, actual-to-formal assignment occurs. If no matching tuple
exists, the process blocks until one becomes available.

rdp(s) & inp(s) Predicate forms of rd and in respectively. They do not block if no
matching tuple exists, but return 0/.FALSE. and exit. If a match is
found, they return 1/.TRUE. and perform actual-to-formal
assignment.

eval(s) Each field of s containing a simple function call results in the
creation of a new process to evaluate that field. All other fields are
evaluated synchronously prior to process creation. When all field
values have become available, the tuple s is placed into tuple
space.

out(s) Synchronously evaluates the fields of the tuple s and then places
it into tuple space.

The prefix __linda_ may be used to construct an alternate name for any
operation if its shorter name conflicts with other symbols.

Formal C-Linda 
Syntax

linda_call : call_type call_body

call_type : in | __linda_in |
inp | __linda_inp |
rd | __linda_rd |
rdp | __linda_rdp |
out | __linda_out |
eval | __linda_eval

call_body: ( element {,element}* )

element: formal | actual
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formal: ? lvalue[:length] | type_name

actual: rvalue[:length]

length: expression

type_name: float | double | struct | union | 
[unsigned] ( int | long | short | char )

Timing Functions
The C-Linda function names are listed below. The Fortran Linda versions have an
f prepended to the C-Linda function name.

start_timer() Initializes and starts the stopwatch in the current process. A
separate call to start_timer is required in each process where
timing is desired.

timer_split(string)
Takes a stopwatch reading when called and labels the time split
with the specified string (length ≤ 32). The maximum number of
timer splits is 32.

print_times() Prints a table listing all time splits executed so far for this process.
Each row includes the time split and its associated string.

Support Functions
The C-Linda function names are listed below. The Fortran Linda versions have an
f prepended to the C-Linda function name.

lexit(status) Replacement for the C exit function. The lexit routine allows an
eval process to abort the execution of the routine invoked
through the eval operation but still continue as an eval server.
The status value (int) passed to lexit is placed into the
corresponding field of the live tuple (subject to typecasting
restrictions).

lhalt(status) Terminates execution of the entire Linda application (not just the
local process), after calling any termination handlers specified by
lonexit (see below). Provides the exit value returned by ntsnet.

lintoff() Blocks the interrupts associated with tuple space handling. It is
useful for protecting time-consuming system calls from being
interrupted. Interrupts should not be disabled for long periods.
linton and lintoff calls may be nested.

linton() Restores the interrupts associated with tuple space handling (see
lintoff below).
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loffexit(hd) Deletes a specific handler from the list of handlers set up by
lonexit, where hd is the handler descriptor returned by lonexit.
Returns 0 on success and -1 on failure (descriptor out of range or
not referring to an active termination handler).

lonexit(*p,a) Names a routine to be called after a Linda process calls lexit,
lhalt, or returns normally. The routine p is called as:

        (*p)(status,a)

where status is the argument with which return, lexit or lhalt was
called, and a is typically the address of an argument vector,
although it also may be an integer value. Multiple calls may be
made to lonexit, specifying up to 16 termination handlers, which
are called in reverse chronological order (i.e., the last specified
routine is called first). lonexit returns a unique, non-negative
termination handler descriptor upon success or -1 if the
termination handler could no be stored.

lprocs() Returns the total number of processes that have joined the
computation (including the master process). In the Code
Development System, this function is not meaningful, and it
returns the value of the LINDA_PROCS environment variable, or
the value 6 if it is not defined.

UNIX System Call Restrictions
Network Linda is currently implemented using signal handlers for SIGIO and
SIGALRM. Programmers should not redefine the signal handlers for these signals.
Doing so will prevent Network Linda from handling tuple space messages
properly.

Another implication of this fact is that when Network Linda handles a SIGIO or
SIGALRM signal, it may interrupt certain UNIX system calls. Like any C program
written with signal handlers, your Network Linda program must be written to
handle interrupted system calls, for example, reading and writing slow devices
like pipes, terminals, and sockets (operations on fast devices are not a problem).

When a system call such as a select is interrupted, it will return the value -1 and
errno will be set to EINTR. When this happens, the program should execute the
system call again. In some cases, the system call will return without an error, but
indicate that it did not read or write all that was requested. In this case, the
program should issue another request to read or write the remaining data.

Another method is to block the SIGIO and SIGALRM signals briefly while
executing the system call. The previous state should be restored after the system
call. This is most easily done with the linton and lintoff support functions.

Some version of UNIX, such as those based on 4.2 and 4.3 BSD, restart
interrupted system calls automatically. However, for portability, it is usually best
to test to EINTR and handle the condition as appropriate.
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The following is a partial list of routines that can return an error value if
interrupted: creat, open, close, read, readv, write, fcntl, msgrcv, msgsnd,
semop, getmsg, putmsg, poll, recv, recvfrom, recvmsg, send, sendto,
sendmsg, select, connect, sigpause, sigsuspend, wait, wait3, wait4, waitpid,
pause, lockf. In addition, these same considerations may apply to other system
calls or library functions that ultimately call one of these system calls.

The UNIX routines sleep, usleep, malloc, realloc, and free are redefined by
Network Linda. There should be no ill effects from calling these routines, with
the possible exception of sleep or usleep called from a process forked from a
Network Linda program. These calls result in jumps to the Linda kernel, and so
should never be called by non-kernel Linda processes. To avoid problems, child
processes created via a fork system call should never execute Linda operations
or calls to sleep or usleep. In general, we recommend that fork calls be shortly
followed by an exec of a non-Linda program. Once the exec occurs, sleep and
usleep may be called provided it is a non-Linda program (containing no Linda
operations and not built by the clc or flc command).

The clc and flc Commands

Command 
Syntax

clc [options] source files …
flc [options] source files …

clc expects source files to be of one of the following types: .c, .cl, .o, .lo. flc
expects source files to be of one of the following types: .f, .fl, .o, .lo. By
default, these commands produce the executable a.out (override this name
with -o). Figure 9illustrates the compilation and linking process.
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Command line:  clc -o sundae choc.cl straw.lo vanilla.cchoc.cl

choc.i

choc.lo straw.lo

vanilla.c

choc.o

linda_cpp

clc_parser

clc_le

postcpp_cc

linda_cc

clc_rl

linda_cc_link

Linda Runtime Support
linda.a •
cmain •

etc.

shell script
(calls cpp)

executable

executable
(aka “the Linda engine”)

shell script

shell script

executable
(aka “the analyzer”)

shell script
(calls cc & ld)

d0 __ltxxx.c

choc.d0

Compilation

Linking

straw.d0 straw.o

choc.i1

vanilla.o

__ltxxx.o

sundae

__ltxxx .o

fudge.fl

flc_parser executable

passes to •
C-Linda •
compiler

Fortran Linda variation:

fudge_.f fudge.cl

passes to •
native •

Fortran •
compiler

Figure 9. The Compiling and Linking Process
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Command 
Options

Many of these options have the same meanings as they do with other UNIX
compilers.

-c Suppress linking and only produces .lo object files for each
Linda source file.

-Dname[=definition]
Define a C-preprocessor symbol (clc only).

-g Produce additional symbol table information for debuggers.

-help Display a help message.

-Ipathname Add the specified directory to the include list (clc only).

-linda option [arguments]
Linda-specific compiler directives. Values for option are:

[no]arrsize Save the sizes of adjustable arrays on
subprogram entry so that Linda’s array size
information will not be affected by
assignments to dimensioning variables within
the subprogram. The default is arrsize (flc
only).

compile_args s Pass the string s on to the native compiler
when it is used to compile source files.

c_args s Pass the string s on to the C compiler (flc
only).

info Print out the pathname of the Linda directory
and the default size of tuple space.

keep Do not delete generated _.F files (flc only).

link_args s Pass the string s on to the compiler when used
to link the executable.

main file Use specified file in place of cmain.o (useful
for building C++ executables; clc only).

ts N Initialize tuple space to N 200-byte blocks.
This option is ignored by Network Linda.

tuple_scope Prepare the object files and/or executable to
be run with the Tuplescope debugger. This
option may be abbreviated as t_scope.

profile Prepare a Network Linda program for
profiling.
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xdr Perform XDR conversion on all data related to
tuple space (i.e., tuples and templates). This
option will ensure proper conversion for all
simple data types and arrays of simple data
types regardless of endianism or floating point
format, at a cost of some performance penalty.
Use this option only in a heterogeneous
network.

-lx Link in the library libx.a.

-Ldirectory Add directory to the object file/library search list used by the
linker.

-o outputfile Name the executable file as indicated.

-v Display subcommands for each step of the compilation.

-w Suppress warning messages.

-w72 Suppress warning messages about text beyond column 72 (text is
still ignored; flc only).

The ntsnet Command

Syntax ntsnet [options] executable [arguments]

Parameters options One or more command line options (listed below). Command
line options override configuration file settings.

executable Executable file to execute.

arguments Arguments to the executable program.

Options Syntax 
Convention

When setting boolean resources on the command line, ntsnet uses the
convention that an option name preceded by a minus sign sets the corresponding
resource to true, and one preceded by a plus sign sets the corresponding
resource to false.

Command 
Options

-appl name This option causes ntsnet to use name as the application name for
the purposes of querying the configuration file database.
Normally, ntsnet uses the executable name, as typed on the
ntsnet command line, as the application name in the
configuration file database. This can be useful if several different
executables use the same configuration parameters. Note that
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-appl has no corresponding resource parameter in the
configuration file.

-bcast This option enables the tuple broadcast optimization.

+bcast This option disables the tuple broadcast optimization. This is the
default.

-bcastcache s This option specifies the size of the broadcast cache in bytes. This
size is a trade-off between memory consumption and hit rate. The
default size is 1 MByte. This resource is only used when bcast is
true.

-cleanup This option indicates that remote executables should be removed
when execution completes. This is the default. Note that the local
executable is protected from removal.

+cleanup This option indicates that remote executables should not be
removed when execution completes.

-d/+d Synonymous with -distribute/+distribute.

-debug Run application in debug mode (see Chapter 4). This option also
changes or overrides the values of several ntsnet resources; see
the discussion of the debug resource later in this chapter for
details.

-distribute This option causes executables to be copied to remote nodes prior
to execution. Executables shall only be copied to nodes which are
actually going to take part in the execution. After execution
completes, ntsnet automatically removes the remote executables
that it just distributed. The local executable is protected from
removal. See the cleanup command line option or resource for
information on preventing the automatic removal of remote
executables.

+distribute This option indicates that executables are not copied. This is the
default.

-fallbackload load 
This option specifies the load average the scheduler shall use for
a node if the RPC call to get system load average fails. The default
is 0.99. The value specified can be any real number >= 0. If failure
of the RPC call indicates that the node is down, this option can be
used to set fallbackload to a very large value, effectively making
the node unavailable to ntsnet.

-getload This option indicates that ntsnet should use load average
information when scheduling workers on the nodes in the
network. This is the default. 

+getload This option indicates that ntsnet should not use load average
information. This can be used to make worker scheduling
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consistent between different runs of ntsnet. It also makes sense if
the rstatd daemon is not available on the network.

-h/+h Synonymous with -high/+high.

-help This option causes ntsnet to display the usage message.

-high This option causes all workers to be run at normal priority and
causes Linda internodal communication to run at full speed. This
is the default.

+high This option causes all workers to run at a nice-ed priority (unless
specifically overridden on a per node per application basis using
the nice resource). It also causes Linda internodal
communication to be throttled to avoid flooding the network. 

-kainterval seconds
Specifies how often, in seconds, each Linda process sends out a
keep alive message. The default is 100 seconds. The range of legal
values is 100 to 31536000 (one year). The range is silently
enforced. This resource is only useful when the keep alive
mechanism is used (i.e., when kaon is true).

-kaon This option turns on the keep alive mechanism. This is the
default.

+kaon This option turns off the keep alive mechanism.

-loadperiod minutes
This option specifies the number of minutes over which the
machine load is averaged. Typical values for loadperiod are 1, 5,
and 10. The default is 5.

-m minutes Synonymous with -loadperiod. Included for backward
compatibility with pre-2.4.7 versions of Network Linda.

-masterload load
This option specifies the load that the master (real_main)
process is considered to put on the node. The value specified can
be any real number >= 0. The default is 1. Typically 1 or some
smaller fraction is used. If the master process uses much less CPU
time than the workers, the master load should be set smaller than
the worker load. 

-maxprocspernode number
This option specifies the maximum number of Linda processes
started on any given node the application is running on. On the
local node, maxprocspernode includes the master. The default
value is 1.

-mp number Synonym for -maxprocspernode.

-n minworkers[:maxworkers]
This option specifies the acceptable range of the number of
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workers that the application can run with. If maxworkers is
omitted, it is set to the same value as minworkers. ntsnet initially
starts up the number of workers equal to the maximum of the
minworkers and maxworkers resource values. The master then
waits as specified in the minwait and maxwait resources, for the
workers to join the execution group. If at least minworkers join
before the maxwait interval has elapsed, execution shall proceed,
otherwise execution shall terminate.

-nodefile filename
This option specifies the name of the file containing a list of nodes
on which this application can run. The default is tsnet.nodes.
This resource is for backward compatibility with the old tsnet
utility. This file is only used if the nodelist resource is set to
@nodefile, which is the default value. See the description of the
nodelist resource for more details.

-nodelist "node-specifiers..."
This option specifies a space-separated list of nodes on which an
application may run. This list must be inclosed in quotes if more
than one node-specifier is used. A node-specifier can be any one
or a combination of the types described below:
     The keyword @nodefile
     A node name
     A user defined resource

See the description of the nodelist resource for more details.

Note: If the -nodelist option is not used and you have not
specifically set the nodelist resource in the ntsnet configuration
file(s), the application will run on the nodes contained in the
tsnet.nodes file in your current working directory.

-opt "resource: value"
This option specifies a value to override any resource in the
configuration file. It provides a mechanism for overriding
resources for which no specific command line option is provided.

-p path This option specifies both the directory on a remote node where
the Linda executable resides or will be distributed to, and the
directory that shall be cded to prior to executing the remote
Linda process. Thus the -p option simultaneously overrides both
the rexecdir and rworkdir resources.

Since -p specifies a local directory, the value of -p is subject to
map translation. The translation occurs before the -p value
overrides the rexecdir and rworkdir resources. This option is
intended to provided a mechanism very similar to the -p option
on the previous tsnet utility.

-redirect This option turns on the tuple redirection optimization. This is
the default.

+redirect This option turns off the tuple redirection optimization.
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-suffix This option causes a node specific suffix, indicated by the
suffixstring resource, to be appended to the executable name.
This is the default. Note that the default value of suffixstring is
an empty string.

+suffix This option indicates that Network Linda is not to use node
specific suffixes.

-translate This option indicates that map translation shall be performed.
This is the default. Note that it is not an error to have translation
on and to have no map file. In that case, no translations will be
performed.

+translate This option indicates that map translation shall not be performed.

-udp size This option specifies the UDP datagram size used by the Linda
kernel. The default is 7800 bytes. This is an optimistic relatively
large UDP size used for good throughput. Some networks,
particularly those with gateways, may drop UDP packets this
large, in which case you can try reducing the UDP datagram size.
Some networks may successfully support even larger UDP
datagram sizes. You may be able to increase throughput by
increasing the UDP datagram size. Furthermore, heavily loaded
networks actually get better throughput using smaller UDP
packets, when packets get dropped.

-useglobalconfig
This option causes ntsnet to use the resource definitions in the
global configuration file. The resource definitions in the global
configuration file are used in addition to the command line
options and the user’s local configuration if one exists. This is the
default.

+useglobalconfig
This option causes ntsnet not to use the resource definitions in
the global configuration file. ntsnet will only use the command
line options and the user’s local configuration file if one exists.
This is useful if a user does not wish to use the configuration file
installed by the system administrator.

-useglobalmap
This option causes ntsnet to use the global map translation file.
The translations in the global map translation file are used in
addition to the user’s local map translation file if one exists. This
is the default.

+useglobalmap
This option causes ntsnet not to use the global map translation
file. ntsnet will only use the user’s local map translation file if
one exists. This is useful if a user does not wish to use the map file
installed by the system administrator.

-v/+v Synonymous with -verbose/+verbose.
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-vv/+vv Synonymous with -veryverbose/+veryverbose.

-verbose This mode displays remote commands being issued and other
information useful for debugging configuration and map files.

+verbose This option turns off verbose mode. This is the default.

-veryverbose Turns on very verbose mode, which produces the maximum
amount of informational status messages.

+veryverbose This option turns off very verbose mode. It is the default.

-wait minwait[:maxwait]
This option specifies the minimum and maximum times to wait
for nodes to join the execution group. If maxwait is omitted, it is
set to the same value as minwait. Both default to 30 seconds.
Execution will commence once the execution group is set, based
on the values of the minwait, maxwait, minworkers, and
maxworkers resources (see the discussion of these resources in
the next section for details).

-workerload load
This option specifies the load that a worker will put on a node.
The value specified can be any real number >= 0. The default is 1.
Typically 1 or some smaller fraction of 1 is used. A larger value
could be used to increase the chances of having one Linda
process running on each node.

-workerwait seconds
This option specifies the time, in seconds, that a worker waits for
a response to its join message, from the master. The default is 90.
If a worker does not get a response within the specified time,
telling the worker that it’s joined, the worker will exit, and
therefore not participate in the application execution. 

ntsnet Configuration File Format
This section serves as a reference for the format of both the user (local) ntsnet
configuration file (~/.tsnet.config) and the global ntsnet configuration file
(lib/tsnet.config relative to the Linda tree).

When setting Boolean resources in the configuration files, values can be specified
as true or false, yes or no, on or off, or as 1 or 0.

Resource 
Definition Syntax

program[.appl][.node].resource: value

where the various components have the following meanings:

Program is either the class name Tsnet, or a specific instance of this class (i.e.,
ntsnet). In the future, there may be alternate versions of Tsnet-type programs,
such as xtsnet, but currently there is only ntsnet.
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Appl is either the class name Appl, or a specific application name, such as ping.
The application instance names cannot contain a period; you must convert
periods to underscores.

Node is the class Node, or a specific node name, such as mysys. The node
instance names can be either the node’s official name or a nickname. The node
instance names are node names found in either the /etc/hosts file, the NIS
hosts database, or the Internet domain name database. An example of an official
name is, fugi.mycompany.com. A typical nickname for this node is fugi. If a
node name contains a period, you must convert the period to an underscore. The
other option would be to use a nickname not containing the “.” character.

Resource is a variable name recognized by ntsnet which can be assigned values.

Value is the value assigned to the resource.

If both the appl and node components are required for a given resource
definition, the appl component must precede node. If an incorrect format is
used, the resource definition will be ignored by ntsnet.

Resources Note: All resources are application-specific unless otherwise specified. Also, if the
corresponding option is used on the ntsnet command line, it takes precedence
over the resource value in the configuration files.

available Specifies whether a node is available for use as a worker. This
resource is node-specific. The default is true.

bcast Specifies whether or not the tuple broadcast optimization is
enabled. The default is false.

bcastcache Specifies the size of the broadcast cache. This size is a trade-off
between memory consumption and hit rate. The default size is
1Mb. This resource is only used when bcast is true.

cleanup Specifies whether or not remote executables shall be removed
from remote nodes after execution completes. Executables are
removed only if they were distributed by ntsnet in the current
execution. The local executable is protected from removal. The
default is true.

debug Specifies whether or not to run in debug mode (see Chapter 5).
The default is false. If true, also changes the default value for
kaon to false, for workerwait to 1000000, and for maxwait to
1000000, and overrides the value of nice to be false.

debugger Specifies the debugger to use when running in debug mode. The
default is dbx.

delay Specifies the delay period in seconds between invocations of rsh
when ntsnet initiates execution on remote nodes. The default
value is 0.
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distribute Specifies whether or not the executable(s) shall be distributed to
the remote nodes. Executables are distributed only to those
remote nodes that are actually going to take part in the execution.
After the execution completes, ntsnet automatically removes the
remote executables that it just distributed. The local executable is
protected from removal. The default is false. See the cleanup
resource for information on preventing the automatic removal of
remote executables.

fallbackload Specifies the load average the scheduler shall use for a node if the
RPC call to get system load average fails. The default is 0.99. The
value specified can be any real number >= 0. If failure of the RPC
call indicates that the node is down, this option can be used to set
fallbackload to a very large value, effectively making the node
unavailable to ntsnet.

getload Specifies whether or not to use load averages when scheduling
workers on the nodes in the network. The default is true. This can
be used to make worker scheduling consistent between different
runs of ntsnet. It also makes sense if the rstatd daemon is not
available on the network.

high Specifies whether all workers shall run at normal priority and
Linda internodal communication should run at full speed. The
default is true. If the high resource is false, the workers run
nice’d, unless specifically overridden on a per node per
application basis using the nice resource (note that high being
true overrides the setting for nice). Also when the high resource
is false, Linda internodal communication is throttled so that it
does not flood the network and thereby degrade the performance
of the network Linda application and other network users. For
small networks, 2-4 nodes, specifying high as true will probably
not make a difference. On large networks, specifying high as
true, and thus asking the Linda kernel not to throttle internodal
communication, may cause the network to flood.

kainterval Specifies how often, in seconds, each Linda process sends out a
keep alive message. The default is 100 seconds. The range of legal
values is 100 to 31536000 (one year). The range is silently
enforced. This resource is only useful when the keep alive
mechanism is used, that is, when kaon is true.

kaon Specifies whether of not the keep alive mechanism is used. The
default is true unless debug is true, in which case it is false.

lindarcparg Specifies a string to be passed to the linda_rcp shell script called
by ntsnet to distribute executables to remote nodes. This
resource provides a hook enabling the user to change the
behavior of the shell script (which can itself be modified by the
user). The default implementation of linda_rcp (located in the
Linda bin subdirectory) takes no arguments and so ignores the
value of this resource. This is a node-specific resource.
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lindarsharg Specifies a string to be passed to the linda_rsh shell script, called
by ntsnet to start up a worker process on a remote node. This
resource provides a hook enabling users to control the behavior
of the shell script (which can itself be modified by the user). In the
default implementation of linda_rsh (located in the Linda bin
subdirectory), only the string “on” is meaningful as a value to
this resource. If “on” is passed to linda_rsh, then the on
command will be used instead of rsh to initiate the remote
process. This is a node-specific resource.

loadperiod Specifies the number of minutes over which the machine load is
averaged. This is the load average then used by the worker.
Typical values for loadperiod are 1, 5, and 10. The default is 5.

masterload Specifies the load that the master (real_main) process is
considered to put on the node. The value specified can be any real
number >= 0. The default is 1. Typically 1 or some smaller
fraction is used. If the master process uses much less CPU time
than the workers, then masterload should be set smaller than
workerload. 

maxnodes Specifies the maximum number of nodes on which to execute.
The default value is the number of nodes in the node list.

maxprocspernode
Specifies the maximum number of Linda processes started on any
given node the application is running on. On the local node,
maxprocspernode includes the master. The default value is 1.

maxwait The maximum amount of time to wait for a valid execution group
to be formed. Note that maxwait specifies the total time to wait,
including the time specified in minwait; it does not represent an
amount of time to wait over and above the minwait interval. The
default is 30 seconds, which is the same as the default for
minwait, unless debug is true, when the default value is 1000000
seconds. See the discussion of minwait below for more details
about this resource.

maxworkers Specifies the maximum number of workers started for a given
application. The default is the number of distinct nodes in
nodelist minus one for the local node running the master. ntsnet
initially starts up the number of workers equal to the maximum
of the minworkers and maxworkers resource values. The master
then waits the time period specified in the minwait and maxwait
resources for the workers to join the execution group. If at least
minworkers join within that time, execution shall proceed,
otherwise execution shall terminate. See the discussion of
minwait below for full details.

minwait Specifies the minimum amount of time to wait to allow an
execution group to form in seconds; the default is 30. Execution
will proceed according to the following criteria. First, if at any
point before the minwait interval has elapsed, maxworkers
workers have joined the execution group, execution will
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commence at once. When the minwait interval expires, if at least
minworkers workers have joined the execution group, then
execution will begin. Otherwise, execution will begin as soon as
minworkers workers do join or the maxwait interval has expired
(the latter includes the time in minwait). If there are still not
maxworkers workers when the maxwait interval ends,
execution will terminate.

minworkers Specifies the minimum number of workers started for a given
application. The default is 1. Thus, the default minimum shall be
a master process and one worker (see maxworkers).

nice Specifies whether or not workers on a specific node run nice’d.
This resource is node and application specific. The default is true.
When the high resource is set to true, this resource is ignored.
When debug is true, its value is overridden to be false.

nodefile Specifies the pathname of the file containing a list of nodes on
which this application can run. The default is tsnet.nodes. If
nodefile and nodelist are both undefined, ntsnet shall look for
the list of nodes on which to run in the tsnet.nodes file in the
current working directory. This is the default behavior and is
backwards compatible with the old tsnet utility. The nodefile
resource is only used if the nodelist resource is set to
@nodefile, which is the default value. See the description of the
nodelist resource for more details.

nodelist Specifies a space separated list of nodes on which an application
may run. The nodelist value may be set to any one or a
combination of these items: the key word @nodefile, a node
name, and user defined resources. The default is @nodefile,
plus the local node name. The key word @nodefile refers to the
nodefile resource value, which is a file containing a list of node
names. User defined resources provides a way to specify a list of
node names symbolically. The user defined resource must be
preceded with the indirection symbol. The maximum number of
indirections is 16.

redirect Specifies whether or not tuple redirection optimization is used.
The default is true.

rexecdir Specifies the directory on a remote node where the Network
Linda executable resides. Or if distributing, it also specifies the
directory on the remote node where the Linda executable shall be
distributed to prior to execution. This resource is node and
application specific. The default is the key word Parallel. The
Parallel keyword indicates that ntsnet should use the map file
to translate the name of the local executable directory for that
remote node.

rworkdir Specifies the remote node's working directory. This resource is
node and application specific. The default is the key word
Parallel. The Parallel keyword indicates that ntsnet should
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use the map file to translate the name of the local working
directory for that remote node.

speedfactor Specifies the relative aggregate CPU capability of a particular
node. The larger the relative speedfactor, the more capable that
particular node is of running multiple workers. This resource is
node specific. The default is 1. 

suffix Specifies whether or not to append a node specific suffix,
indicated by the suffixstring resource, to the executable name.
The default is true.

suffixstring Specifies a suffix to be appended to a particular executable name
when run on a particular node (the default is the null string,
meaning no suffix). This resource is node and application
specific. It is most useful in heterogeneous networks.

threshold Specifies the maximum load allowed on a specific node. The
ntsnet scheduler is prevented from starting another worker on
this specific node when this threshold is reached. This resource is
node specific. The default is 20.

translate Specifies whether map file translation is used. The default is true.

udp Specifies the UDP datagram size used by the Linda kernel. The
default is 7800 bytes. This may be set lower if your network
contains a gateway node that can not handle UDP packets of this
size. On faster networks, it is sometimes advisable to increase the
UDP size.

useglobalconfig
Specifies whether the global configuration file is used. The
default is true.

useglobalmap Specifies whether the global map translation file is used. The
default is true.

user Specifies a username to use on remote nodes, instead of your
local username. If this resource is unspecified, the remote
username is the same as your local username. This resource is
node specific.

verbose Specifies whether or not ntsnet works verbosely. The default is
false. If the verbose resource is true, ntsnet displays remote
commands being issued, and information about each node
specified in the nodelist resource.

veryverbose Specifies whether the maximal amount of status messages should
be displayed. The default is false. The veryverbose and verbose
resources are independent.

workerload Specifies the load that a worker will put on a node. The value
specified can be any real number >= 0. The default is 1. Typically
1 or some smaller fraction is used. A larger value could be used to
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increase the chances of having one Linda process running on each
node.

workerwait Specifies the time, in seconds, that a worker waits for a response
to its join message, from the master. The default is 90, unless
debug is true, in which case it is 1000000. If a worker does not get
a response within the specified time, telling the worker that it has
joined, the worker will exit, and therefore not participate in the
execution of the application.

Piranha Configuration File Format
This section documents the format of the Piranha configuration file, /usr/etc/
piranha.config. Its entries have the general format:

programspec.nodespec.userspec.resourcespec: value

where programspec is either the class name Tsnet or the specific instance
piranha, nodespec is the class Node or the name of an individual node,
userspec is either the class User or a specific username (on the local node), and
resourcespec is the name of a resource (available resources are discussed
individually below), which is to be assigned the specified value.

Resources advance Specifies how low the load average must drop before the
piranha may advance (resume execution). It is designed to
prevent the piranha’s retreat from reducing the load average
sufficiently to allow it to immediately restart. The default value is
1.9.

advancecheck Specifies how often a suspended Piranha process should check if
conditions allow it to advance or not (in seconds); the default
value is 10.

enabled Determines whether Piranha may run on a node at all. The
default value is true.

idle Specifies how long user devices (such as the keyboard) must be
idle before the Piranha system can use that node (in seconds, with
a default  value of 300). 

loadperiod Specifies the number of minutes over which the load average is
computed (the default value is 5).

retreat Specifies how high the load average on the system may go before
a running piranha must retreat. Its value is a floating point
number and defaults to 3.0.

retreatcheck Specifies how often a piranha should check if it should retreat
while it is running (in seconds); the default value is 10.
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Map Translation File Format
This section documents the format of the map translation files used by Network
Linda. These files are .tsnet.map in the user’s home directory—the local map
file—and lib/tsnet.map (the global map file, located relative to the Linda
tree).

Map file entries have one of the following formats:

map generic-directory {
   node1 : specific-directory;
   [node2 : specific-directory ;]
   …

}
mapto generic-directory {
   node1 : specific-directory ;
   [node2 : specific-directory ;]
   …

}
mapfrom generic-directory {
   node1 : specific-directory ;
   [node2 : specific-directory ;]
   …

}

Note that generic-directory need not be a real directory location at all, but can be
any string. In this case, the entry has the effect of setting up equivalences among
the listed set of remote directories.

Wildcards are allowed in map translation file entries:

➠ The asterisk character (*) may be used for any node name or as the first 
component of a node name (e.g. *.com). 

➠ The ampersand character (&) substitutes the current node name—at the 
time and in the context in which the translation is taking place—within a 
directory pathname. It may be used in either generic or specific directory 
specifications.

See the discussion in Chapter 4 for full details on map translation file entries.

Environment Variables
The following environment variables are used within the Linda system:

DEBUGGER Specifies the debugger to use when combining a native
debugger with Tuplescope. The default is dbx (xdb under
HP/UX).
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LINDA_CC Used by the linda_cc shell script; specifies the C compiler
to use for compiling .c files (defaults to cc).

LINDA_CC_LINK Used by the linda_cc_link shell script; specifies the
command to use for linking the executable (defaults to cc).

LINDA_CLC Used by the C-Linda compiler; specifies which type of
executable to build: network or cds (Code Development
System).

LINDA_FLC Used by the Fortran Linda compiler; specifies which type of
executable to build: network or cds (Code Development
System).

LINDA_FORTRAN Used by the linda_fortran shell script; specifies the
Fortran compiler to use for compiling .f files (defaults to f77
in most cases, and to xlf under AIX).

LINDA_FORTRAN_LINK
Used by the linda_fortran_link shell script; specifies
the command to use for linking the executable (same defaults
as for LINDA_FORTRAN).

LINDA_PATH Specifies the path to the Linda installation directory. The
directory specification must contain a terminal slash.

LINDA_PROCS Used by the Linda Code Development System as the return
value for the lprocs and flprocs support functions (under
CDS, lprocs is not truly meaningful and is provided only for
compatibility with Network Linda).

POSTCPP_CC Used by the postcpp_cc shell script; specifies the C
compiler to use for compiling .cl files (defaults to cc).

POSTFL_FORTRAN Used by the postfl_fortran shell script; specifies the
Fortran compiler to use for compiling .f files generated by
Fortran Linda from .fl source files (same defaults as for
LINDA_FORTRAN).

TSNET_PATH Used by ntsnet; specifies its search path for local executables.
Its value is a colon-separated list of directories.
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Tuplescope Reference

Menu Buttons Modes Set debugging modes on or off.

Aggregates Specify format for aggregates displays (active when Display
Aggregates is on). Available formats are: Long, Short, Float,
Double, Character, and Hexadecimal.

Run Begin program execution.

Break Pause program execution.

Continue Resume execution of a paused program.

Debug Create, edit and/or compile a TDL program.

Save Save the current contents of tuple space to a file (not available
when Dynamic Tuple Fetch mode is in effect). The file is named
program.N.dump, where program is the application name and N is
a integer incremented each successive save operation.

Quit End Tuplescope session.

The Modes Menu Single Step Controls whether single step mode is in effect or not (default is
off).

Display Aggregates
Controls whether the contents of aggregates are displayed in
tuple displays (off by default). If Display Aggregates is not in
effect, aggregates in tuple displays appear as the word Block.
The format for an aggregate display is the one that was in effect
when its tuple icon was opened if Dynamic Tuple Fetch is in
effect or when it entered tuple space if Dynamic Tuple Fetch is
not in effect.

Dynamic Tuple Fetch
When in effect, tuple contents are copied to Tuplescope only
when requested. This mode may speed up execution somewhat,
but it has the side effect that not all tuples are always
continuously available for inspection as they are under the
normal mode.

Reverse Execution
Available in postmortem mode only. Causes execution to run in
reverse when in effect.

Exit Modes Menu
Close the Modes menu.
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The Debug Menu Edit program.debug
Edit a TDL program named for the current application. The
editor specified by the EDITOR environment variable is opened
in a new window.

Compile program.debug
Translate the TDL program to Tuplescope’s internal form and put
its statements into effect.

Clear Debugging Actions
Cancel all debugging directives in effect via the current TDL
program.

Exit Debug Menu
Close the Debug menu.

TDL Language Syntax
TDL statements have the following form:

if (condition) then action

Conditions have one of the following formats (select one item from each
column). This format tests the value in a tuple field and performs the action for
matching tuples:

[ field N == constant_value]
!=
>
<

This format tests for the specified Linda operation and performs the action for
matching processes:

[ linda_op == eval         ]
!= out

in
rd
block_in
block_rd

This format tests for the specified process number and performs the action for
matching processes:

[ process == N ]
!=
>
<

Note that the brackets are part of the condition syntax and must be included.
Multiple conditions may be joined with and and or. The entire condition is
enclosed in parentheses when it is placed into the TDL statement.
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Actions must be one of the following:

break Pause program execution.

hide Hide the triggering processes/tuples.

color c Change the triggering process/tuple to the color c, one of: red,
orange, yellow, green, blue, indigo, and violet.

save Save the current contents of tuple space to a file, named
program.N.dump, where program is the application name and N is
a integer incremented each successive save operation.
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Appendix: How & Where to Parallelize

This appendix contains a short discussion of how to find the computational
kernels in a program. It discusses the UNIX profiling utilities prof and gprof. The
steps described here are independent of C-Linda and are usually done before
parallelizing the program. They are designed to help you determine where to
focus your efforts within the original application. This appendix by nature is
introductory and brief; consult the relevant manual pages and related works in
the Bibliography for more detailed discussions of these commands and profiling
in general.

In order to use the UNIX profiling utilities, the -p (for prof) or -pg (for gprof)
options must be included on the link command. Note that they are not needed
for compilations, only for linking. For example, the following command prepares
the program test24 for use with gprof:

$ cc -o test24 -pg test24.o

Then, you run the resulting executable in the normal manner. Doing so will
create a file named mon.out (prof) or gmon.out (gprof) in the directory from
which the program was executed. These files contain the profiling data obtained
during the run. You then run prof or gprof on the output files.

There can be a lot of output from both of these commands. Among the most
useful are the breakdown of time spent, the number of times each routine was
called, and the call graph information (where each routine was called from). Here
is an example of the first:

%time     seconds  cum %   cum sec  procedure (file)

 29.2    235.9100   29.2    235.91 gaus3_ (gaus3.f)
 24.6    198.5800   53.8    434.49 dgemm_mm_ (dgemm_mm.s)
 13.0    105.1600   66.8    539.65 func3_ (func3.f)
  9.1     73.2500   75.8    612.90 tria_ (tria.f)
  8.0     64.8500   83.9    677.75 exp (exp.s)
  7.2     58.5500   91.1    736.30 intarc_ (intarc.f)
  …

This display shows the total amount and percentage of CPU time used by each
routine, in decreasing order. In this program, 90% of the total execution time is
spent in just 6 routines, one of which is a matrix multiply library call. About 8%
of the time is spent in calls to the exponential function.
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The following display is an example of a call frequency table:

     calls  %calls    cum%    bytes procedure (file)

  20547111   68.53   68.53      480 exp (exp.s)
       768    0.00   68.54    17072 gaus3_ (gaus3.f) 
        …

This sort of display summarizes the number of times a given routine was called.
Often, it is helpful to also know where a routine was called from. A call graph
table will indicate this information. Here is an example:

called procedure  #calls %calls  from line, calling proc(file)

exp              7557120  36.78         48  gaus3_ (gaus3.f)
                 3022848  14.71         63  gaus3_ (gaus3.f)
                 3022848  14.71         79  gaus3_ (gaus3.f)
                 3022848  14.71         95  gaus3_ (gaus3.f)
                  503808   2.45        143  gaus3_ (gaus3.f)
                  503808   2.45        127  gaus3_ (gaus3.f)
                  503808   2.45        111  gaus3_ (gaus3.f)
                  503808   2.45        159  gaus3_ (gaus3.f)
                  503808   2.45        175  gaus3_ (gaus3.f)
                  503808   2.45        191  gaus3_ (gaus3.f)
sqrt             1007616  15.03        111  func3_ (func3.f)
                 1007616  15.03        110  func3_ (func3.f)
                 1007616  15.03        108  func3_ (func3.f)
                 1007616  15.03        109  func3_ (func3.f)
                  503808   7.51         44  func3_ (func3.f)
                  503808   7.51        147  func3_ (func3.f)
                  503808   7.51        148  func3_ (func3.f)
                  503808   7.51        149  func3_ (func3.f)
...

Here we can easily see that the exponential function is called literally millions of
times, all from within one routine. We would want to try to do some of those calls
in parallel if they are independent.
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